• Title/Summary/Keyword: Multi-layered scale

Search Result 49, Processing Time 0.033 seconds

Lateral Resistance Behavior Analysis of Drilled Shafts in Multi-layered Soil (다층지반에 근입된 현장타설말뚝의 수평 지지거동분석)

  • Jang, Seo-Yong;Jeong, Jae-Hoon;Kim, Jong-Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.61-70
    • /
    • 2008
  • In this research, load-transfer-function method was selected, because that is widely used in geotechnical engineering among the analysis methods to verify the behavior of load-lateral displacement. Lateral loading test of field scale was conducted, this measured data was analyzed. From the analysis, the model of load-lateral displacement was suggested. The test results were studied and compared to the commercial programs, 'LPILE', which contain the load transfer functions proposed before. By analysis of measure data of load-lateral displacement that expressed to several functions, $y=ae^{bx}$ model was the simplest and applicable to the field. In that case a value converged about 1.3, b value had a tendency to converge about 0.02. From the comparison analysis between measured data and load transfer function by 'LPILE', it is examined that if the lateral load is small, calculated displacements of them show a similar value compared to measured values. Furthermore, the bigger lateral loads, the bigger calculated values compared to the measured data. If the results are compared by Matlock-Reese method and Matlock-API method, Matlock-Reese method shows result of safe side because lateral displacement is calculated greatly relatively.

An implementation of the mixed type character recognition system using combNET (CombNET 신경망을 이용한 혼용 문서 인식 시스템의 구현)

  • 최재혁;손영우;남궁재찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3265-3276
    • /
    • 1996
  • The studies of document recongnition have been focused mainly on Korean documents. But most of documents composed of Korean and other characters. So, in this paper, we propose the document recognition system that can recognize the multi-size, multi font and mixed type characters. We have utilized a large scale network model, "CombNET" which consists of a 4 layered network with combstructure. And we propose recognition method that can recognize characters without discrimination of character type. The first layer constitutes a Kohonen's SOFM network which quantizes an input feature vector space into several sub-spaces and the following 2-4 layers constitutes BP network modules which classify input data in each sub-space into specified catagories. An experimental result demonstrated the usefulness of this approach with the recognition rates of 95.6% for the training data. For the mixed type character documents we obtained the recognition rates of 92.6% and recognition speed of 10.3 characters per second.

  • PDF

Development of Hybrid Spatial Information Model for National Base Map (국가기본도용 Hybrid 공간정보 모델 개발)

  • Hwang, Jin Sang;Yun, Hong Sik;Yoo, Jae Yong;Cho, Seong Hwan;Kang, Seong Chan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.335-341
    • /
    • 2014
  • The main goal of this study is on developing a proper brand-new data of national base map and Data Based(DB) model for new information technology environments. To achieve this goal, we generated a brand-new Hybrid spatial information model which is specialized in the spatio-temporal map structure, the framework map for information integration, and the multiple-layered topology structure. The DB structure was designed to reflect the change of objections by adding a new dimension of 'time' in the spartial information, while the infrastructure was able to connect/converge with other information by giving the unique ID and multi-scale fusion map structure. Furthermore, the topology and multi visualization structure, including indoor and basement information, were designed to overcome limitations of expressing in 2 dimension map. The result from the performance test, which was based on the Hybrid spatial information model, confirms the possibility in advanced national base map and conducted DB model through implementing various information and spatiotemporal connections.

Effectiveness of Evaluation for Visiting Care Service Institution: From the User's Point of View (방문요양서비스 기관 평가의 효과성 : 이용자 관점에서)

  • Cho, Han-Ra
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.150-158
    • /
    • 2022
  • The purpose of this study is to confirm the effectiveness of the evaluation of long-term care insurance visiting care service institutions for the elderly from the user's point of view. To this end, data from a survey of 266 users collected through allocation sampling by region(14 cities and counties) in Jeollabuk-do and public data from 47 institutions were combined and analyzed using a multi-layered model. The main research results are as follows. First, among the five evaluation areas, the higher the score in the 'Rights·Responsibility' area, which is to give users a sense of rights and respect users, the higher the service quality and satisfaction. Second, among the five evaluation areas, the 'Rights·Responsibility' area had an effect on loyalty. In addition, it was found that the 'Outcome' area for satisfaction with institutions and employees and changes in users had an effect on loyalty. Third, it was found that 'Institutional Management', 'Environment·Safety', 'Process' did not affect service quality, satisfaction, and loyalty. Based on these results, it is proposed to reorganize the evaluation scale that users can recognize and that is faithful to the purpose.

Molecular Beam Epitaxial Growth of Oxide Single Crystal Films

  • Yoon, Dae-Ho;Yoshizawa, Masahito
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.508-508
    • /
    • 1996
  • ;The growth of films have considerable interest in the field of superlattice structured multi-layer epitaxy led to realization of new devices concepts. Molecular beam epitaxy (MBE) with in situ observation by reflection high-energy electron diffraction (RHEED) is a key technology for controlled layered growth on the atomic scale in oxide crystal thin films. Also, the combination of radical oxygen source and MBE will certainly accelerate the progress of applications of oxides. In this study, the growth process of single crystal films using by MBE method is discussed taking the oxide materials of Bi-Sr-Ca-Cu family. Oxidation was provided by a flux density of activated oxygen (oxygen radicals) from an rf-excited discharge. Generation of oxygen radicals is obtained in a specially designed radical sources with different types (coil and electrode types). Molecular oxygen was introduced into a quartz tube through a variable leak valve with mass flowmeter. Corresponding to the oxygen flow rate, the pressure of the system ranged from $1{\;}{\times}{\;}10^{-6}{\;}Torr{\;}to{\;}5{\;}{\times}{\;}10^{-5}$ Torr. The base pressure was $1{\;}{\times}{\;}10^{-10}$ Torr. The growth of Bi-oxides was achieved by coevaporation of metal elements and oxygen. In this way a Bi-oxide multilayer structure was prepared on a basal-plane MgO or $SrTiO_3$ substrate. The grown films compiled using RHEED patterns during and after the growth. Futher, the exact observation of oxygen radicals with MBE is an important technology for a approach of growth conditions on stoichiometry and perfection on the atomic scale in oxide. The oxidization degree, which is determined and controlled by the number of activated oxygen when using radical sources of two types, are utilized by voltage locked loop (VLL) method. Coil type is suitable for oxygen radical source than electrode type. The relationship between the flux of oxygen radical and the rf power or oxygen partial pressure estimated. The flux of radicals increases as the rf power increases, and indicates to the frequency change having the the value of about $2{\times}10^{14}{\;}atoms{\;}{\cdots}{\;}cm^{-2}{\;}{\cdots}{\;}S^{-I}$ when the oxygen flow rate of 2.0 seem and rf power 150 W.150 W.

  • PDF

Development of the RF SAW filters based on PCB substrate (PCB 기판을 이용한 RF용 SAW 필터 개발)

  • Lee, Young-Jin;Im, Jong-In
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.8-13
    • /
    • 2006
  • Recent RF SAW filters are made using a HTCC package with a CSP(chip scale Package) technology. This paper describes a development of a new $1.4{\times}1.1\;and\;2.0{\times}1.4mm$ RF SAW liters made by PCB substrate instead of HTCC package, and this technology can reduce the cost of materials down to 40%. We have investigated the multi-layered PCB substrate structures and raw materials to find out the optimal flip-bonding condition between the $LiTaO_3$ wafer and PCB substrates. Also the optimal materials and processing conditions of epoxy laminating film were found out through the experiments which can reduce the bending moment caused by the difference of the thermal expansion between the PCB substrate and laminating film. The new PCB SAW filter shows good electrical and reliability performances with respect to the present SAW filters.

A Study on the Direction of Planting Renewal in the Green Area of Seoul Children's Grand Park Reflecting Functional Changes (기능변화를 반영한 서울어린이대공원 조성녹지의 식재 리뉴얼 방향성 연구)

  • Park, Jeong-Ah;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.21-36
    • /
    • 2023
  • As a solution to environmental issues, such as climate change response, the carbon neutrality strategy, urban heat islands, fine dust, and biodiversity enhancement, the value of urban green spaces and trees are becoming important, and various studies dealing with the effects of trees for environmental improvement are being conducted. This study comprehensively considers the preceding studies on planting tree species, planting structure, planting density, and planting base to propose a direction for the planting renewal of green areas in urban parks and applies the findings to a renewal plan to improve the urban environment through landscaping trees. A field survey was conducted on the planting status of Seoul Children's Grand Park, a large-scale neighborhood park in Seoul, and based on the survey data, a planting function evaluation was conducted, and areas needing improvement in planting function were identified. The planting function evaluation was carried out considering the park function setting, planting concept according to spatial function, and planting status. As a result of the study, the direction of planting renewal according to functional change was derived for each stage of planting function evaluation. Increasing the green area ratio is a priority in setting up park functions, but user convenience should also be considered. As a concept of planting, visual landscape planting involves planting species with beautiful tree shapes, high carbon absorption, and fine dust reduction effects. Ecological landscape planting should create a multi-layered planting site on a slope. Buffer planting should be created as multi-layered forests to improve carbon absorption and fine dust reduction effects. Green planting should consist of broad-leaved trees and herbaceous layers and aim for the natural planting of herbaceous species. For plant species, species with high urban environment improvement effects, local native species, and wild bird preferred species should be selected. As for the planting structure, landscape planting sites and green planting sites should be composed of trees, shrubs, and trees and herbaceous layers that emphasize ecology or require multi-layered buffer functions. A higher standard is applied based on the planting interval for planting density. Installing a rainwater recycling facility and using soil loam for the planting base improves performance. The results of this study are meaningful in that they can be applied to derive areas needing functional improvement by performing planting function evaluation when planning planting renewal of aging urban parks and can suggest renewal directions that reflect the paradigm of functional change of created green areas.

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

Utilization of Induced Polarization and Electrical Resistivity for Identifying Rock Condition (유도분극 전하 충전성과 전기비저항을 활용한 암반 상태 파악 가능성 연구)

  • Park, Jinho;Ryu, Jinwoo;Jung, Jeehee;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.493-502
    • /
    • 2016
  • This study examines how rock condition affects the variation of the chargeability and electrical resistivity of the rock. In the theoretical study, the relationship correlating chargeability with the variables affecting it is derived. A parametric study utilizing the derived relationship reveals that the size of narrow pores ($r_1$) is the most influential factor on chargeability, and the salinity of pore water ($C_0$) is the second. In the laboratory experiments, small scale rock fracturing zone is modelled using sand stone. Chargeability and resistivity are measured by changing the size of the joint aperture, the location of fractured zone and the existence of clay gouge and/or clay layer which shows lower chargeability than the sand stone layer in the multi-layered ground. Test results show that chargeability is controlled not by the rock fracturing condition but by the size of narrow pore ($r_1$) where each line of current flow passes through. Also, the chargeability decreases with increase of the pore water salinity ($C_0$). In conclusion, the ground condition can be identified more efficiently by measuring the induced polarization along with the electrical resistivity; identifying the existence of sea water, the layered ground and/or the fractured rock becomes more reliable.

Study of High Temperature Corrosion Behavior of Fe-Cr Steel in Sewage Sludge-(SO2-O2-H2O-bal. CO2) mixed Gas Environment (하수슬러지-(SO2-O2-H2O-bal. CO2) 혼합 가스 분위기에서 Fe-Cr 강의 고온부식거동 연구)

  • Kim, Min Jung;Park, Joo Chang;Ryu, In Sun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.72-79
    • /
    • 2020
  • Two Fe-Cr steels of T22 steel and STS430 steel were corroded at 650 and 750℃ for 100hr in sewage sludge-(0.3% SO2-6% O2-10% H2O-balance CO2) mixed gas environment. T22 steel corroded faster than STS430, indicating that the Cr content significantly influence the corrosion rates. T22 formed thick and non-protective Fe2O3 as the major oxide and Fe3O4 as the minor one. With an increase in corrosion temperature, their corrosion rates increased, being accompanied with formation of pores and cracks in the thickened oxide scales that were non-adherent. STS430 steel formed Fe2O3, Fe3O4 as the outer scale and (Fe, Cr)-O as the inner layer by which its corrosion rate is greatly reduced. Both the T22 and STS430 steel samples formed multi-layered scales by outward diffusion of Fe ions and inward diffusion of oxygen and sulfur ions at high-temperature more than 650℃.