• Title/Summary/Keyword: Multi-layered ground

Search Result 71, Processing Time 0.024 seconds

Coupling Performance Analysis of a Buried Meshed-Ground in a Multi-layered Structure

  • Joung, Myoung-Sub;Park, Jun-Seok;Kim, Hyeong-Seok;Lim, Jae-Bong;Cho, Hong-Goo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.282-287
    • /
    • 2004
  • Since the manufacturing process in the LTCC process does not allow solid ground planes between ceramic layers to isolate the signal lines, the buried ground should be realized as a meshed ground plane. Both characteristic impedances of the signal lines and couplings between different signal layers are influenced by the properties of these meshed planes. In this paper, we propose a new analysis method for coupling behavior between internal transmission lines, which are isolated by the buried meshed-ground planes. The coupling behavior between layers isolated by meshed-ground planes is investigated by the coupled-transmission line model for the isolated layers. The coupling factors between isolated lines with the meshed-ground are extracted by 2-D FEM calculations.

Design of the secondary tunnel lining using a ground-primary support-secondary lining interaction model

  • Chang, Seok-Bue;Seo, Seong-Ho;Lee, Sang-Duk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.109-114
    • /
    • 2003
  • It is the common practice to reinforce excessively the secondary tunnel lining due to the lack of rational insights into the ground loosening loads. The main load of the secondary lining for drained-type tunnels is the ground loosening. The main cause of the load for secondary tunnel lining is the deterioration of the primary support members such as shotcrete, steel ribs, and rockbolts. Accordingly, the development of the analysis model to consider the ground-primary supports-secondary lining interaction is very important for the rational design of the secondary tunnel lining. In this paper, the interaction is conceptually described by the simple mass-spring model and the load transfer from the primary supports to the ground and the secondary lining is showed by the characteristic curves including the secondary lining reaction curve for the theoretical solution of a circular tunnel. And also, the application of this model to numerical analysis is verified in order to review the potential tool for practical tunnel problems with the complex conditions like non-circular shaped tunnels, multi-layered ground, sequential excavation and so on.

  • PDF

Dynamic Characteristics of the Box Structure in Multi-layered Ground Under Earthquake Load (지진하중을 받는 다층지반내 박스구조물의 동적 특성)

  • Kim, In Dae;Shin, Eun Chul;Park, Jeong Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.55-63
    • /
    • 2020
  • In this study, a scaled model test of the shaking table and a seismic analysis considering effective stresses were performed to reveal the dynamic behavior characteristics of box structures deep located in multi-layered soils upon seismic loading. The input seismic wave was operated below the ground using five seismic waves, including long period wave (Hachinohe), short period wave (Ofunato), artificial wave and real earthquakes that occurred in Gyeong-ju and Po-hang. As a result of model test and numerical analysis, the vertical displacement of box structures upon seismic loading was greater than that of horizontal direction, and it was confirmed that an increase of excess pore water pressure below the foundation ground caused a displacement. In addition, behavior of the ground and structures during artificial seismic wave appeared to be larger than real earthquake wave.

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.

Ground Movement Analysis by Field Measurements (현장계측에 의한 지반거동 분석)

  • Chon, Yong-Back;Cho, Sang-Wan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.3
    • /
    • pp.161-168
    • /
    • 2005
  • This study is analysis for adjacent structures and ground movement by deep excavation work. Underground Inclinometer has shown that deformation of increment is minor within to allowable limit. According to the measurements result of slope and crack for adjacent structures, a detached house showed bigger than hospital structure to deformation of increment. Variation of underground water level didn't effect so much to ground and adjacent structures movement because underground water flows in rock and didn't give the water press to propped walls. Measurement data of strut variation is within tolerance limit. Because excavation site's wall was strengthened suitably. This study will contribute in establishment of measurement standard and information-oriented construction during deep excavation in multi-layered ground including rock masses.

  • PDF

Ground Behavior Behind Soil Nailed Wall by Feed Back Analysis (역해석에 의한 쏘일네일링 벽체 배면지반의 거동 연구)

  • Jeon, Seong-Kon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.5-13
    • /
    • 2003
  • The soil nailing is one of the useful support-system in urban excavation because of the presence of other structures in the vicinity Since the soil nailing system was introduced, model experiments and theoretical studies have been performed to investigate behavior of soil nailed wall. However, there are few data in the case of multi-layered soil strata just like Seoul Metropolitan area in Korea. The feed back analyses are carried out using the measured wall displacement data for soil nailing construction sites with multi-layered strata in order to analyze the distance and the coefficients of extension zone of ground behind soil nailed wall. As a result, the distance of extension zone increased with increasing of the final excavation depth and the ratio of the distance to the final excavation depth was shown to be about 94% of the final excavation depth. Also, the coefficients of extension zone increased with enlargement of soil layer thickness and converged into constant value of 1.05. On the other hand, the maximum vertical displacements by the feed back analysis and Caspe's method were shown to be approximately 80%, 150~280% of the maximum horizontal displacement respectively.

Evaluation Technique of Seismic Performance on Agricultural Infrastructure - Based on Dynamic Numerical Analysis - (농업 기반시설의 내진성능 평가기법 - 동적 수치해석 중심으로-)

  • Lee, Dal-Won;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.75-84
    • /
    • 2004
  • The evaluation technique of seismic performance on agricultural infrastructure based on dynamic numerical simulations, which Included a cyclic elasto-plastic and a viscoelastic-viscoplastic constitutive model to actual multi-layered ground conditions during large earthquake were performed by a liquefaction analysis in the present study. From the liquefaction analysis, it was verified that the models can give a good description of the damping characteristics and liquefaction phenomena of ground accurately during large event which induces plastic deformation in large strain range.

Empirical Model of Via-Hole Structures in High-Count Multi-Layered Printed Circuit Board (HCML 배선기판에서 비아홀 구조에 대한 경험적 모델)

  • Kim, Young-Woo;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.55-67
    • /
    • 2010
  • The electrical properties of a back drilled via-hole (BDH) without the open-stub and the plated through via-hole (PTH) with the open-stub, which is called the conventional structure, in a high-count multi~layered (HCML) printed circuit board (PCB) were investigated for a high-speed digital system, and a selected inner layer to transmit a high-speed signal was farthest away from the side to mount the component. Within 10 GHz of the broadband frequency, a design of experiment (DOE) methodology was carried out with three cause factors of each via-hole structure, which were the distance between the via-holes, the dimensions of drilling pad and the anti-pad in the ground plane, and then the relation between cause and result factors which were the maximum return loss, the half-power frequency, and the minimum insertion loss was analyzed. Subsequently, the empirical formulae resulting in a macro model were extracted and compared with the experiment results. Even, out of the cause range, the calculated results obtained from the macro model can be also matched with the measured results within 5 % of the error.

A Study on the Depth Dependent Characteristics of Earthquake Ground Motions in a Layered Ground Medium Using Point Source Models (점진원모델을 사용한 층상지반에서의 깊이에 따른 지반운동 특성 변화연구)

  • Koh, Hyun Moo;Kim, Jae Kwan;Kwon, Ki Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.453-462
    • /
    • 1994
  • Variation of seismic wave field in a multi-layered attenuating elastic half space is studied by the propagator matrix method and point source models of which fault-slip functions are defined as ramp functions. In this paper, the earth is modeled as being composed of horizontally stratified layers, with uniform material properties for each layer. The partial differential equations for the seismic motion in each layer are solved using a Fourier Hankel transform approach. Time histories and frequency contents of accelerations and displacements due to a vertical dip-slip and strike-slip point source located in the underlain half space are calculated at the layer interfaces using the developed programs and their characteristics are represented.

  • PDF

Monitoring management for safely construction of deep shield tunnel (대심도 해저 쉴드터널 안전시공을 위한 계측관리)

  • 유길환;김영수;황대영;곽정민;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.319-326
    • /
    • 2002
  • During the construction period of submarine shield tunnel, which is built firstly in very soft marine clay layer 40m deep in Korea, wide range problems were encountered such as safe launching against high earth pressure at shield entrance, technique of shield face pressure control when passing through complex multi-layered soils This paper introduces successful construction practice through development of state-of-the-art construction method and field monitoring.

  • PDF