• 제목/요약/키워드: Multi-layer. perceptron (MLP)

Search Result 234, Processing Time 0.037 seconds

Design of CNN with MLP Layer (MLP 층을 갖는 CNN의 설계)

  • Park, Jin-Hyun;Hwang, Kwang-Bok;Choi, Young-Kiu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.776-782
    • /
    • 2018
  • After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.

Learning Model and Application of New Preceding Layer Driven MLP Neural Network (새로운 Preceding Layer Driven MLP 신경회로망의 학습 모델과 그 응용)

  • 한효진;김동훈;정호선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.27-37
    • /
    • 1991
  • In this paper, the novel PLD (Preceding Layer Driven) MLP (Multi Layer Perceptron) neural network model and its learning algorithm is described. This learning algorithm is different from the conventional. This integer weights and hard limit function are used for synaptic weight values and activation function, respectively. The entire learning process is performed by layer-by-layer method. the number of layers can be varied with difficulty of training data. Since the synaptic weight values are integers, the synapse circuit can be easily implemented with CMOS. PLD MLP neural network was applied to English Characters, arbitrary waveform generation and spiral problem.

  • PDF

Optimal Design of Fuzzy Hybrid Multilayer Perceptron Structure (퍼지 하이브리드 다층 퍼셉트론구조의 최적설계)

  • Kim, Dong-Won;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2977-2979
    • /
    • 2000
  • A Fuzzy Hybrid-Multilayer Perceptron (FH-MLP) Structure is proposed in this paper. proposed FH-MLP is not a fixed architecture. that is to say. the number of layers and the number of nodes in each layer of FH-MLP can be generated to adapt to the changing environment. FH-MLP consists of two parts. one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules. and its fuzzy system operates with Gaussian or Triangular membership functions in premise part and constants or regression polynomial equation in consequence part. the other is polynomial nodes which several types of high-order polynomial such as linear. quadratic. and cubic form are used and is connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method. time series data for gas furnace process has been applied.

  • PDF

Skin Color Detection Based on Partial Connections of MLP (부분연결을 사용한 MLP에 기반을 둔 피부색 검출)

  • Kim, Sung-Hoon;Lee, Hyon-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.681-682
    • /
    • 2008
  • This paper propose skin color detection that uses MLP(Multi Layer Perceptron) and multiple color models. The proposed method reduces weight of MLP by partial connection between input layer and hidden layer based on color models, and the using color models are RGB model and YCbCr model. The experimental result for proposed method showed 94% classification rate of skin and non-skin pixels with 32% decrease in the number of weight compare to general MLP on the average.

  • PDF

Indoor Zone Recognition System using RSSI of BLE Beacon (BLE Beacons의 RSSI를 이용한 실내 Zone인식 시스템)

  • Kim, Jinpyung;Ahn, Taeki;Kim, Sanghoon;Ahn, Chi-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.585-591
    • /
    • 2016
  • Recently, indoor location detection has become an important area in the IoT (Internet of Things) environment for various indoor location-based services. In this paper, our proposed method shows that a virtual region can be divided electromagnetically according to specific facilities or services in various IoT application areas called zones. The MLP (Multi-Layer Perceptron) method is applied to recognize the service zone at the current position. The MLP utilized an RSSI (Received Signal Strength Indicator) signal of the BLE (Bluetooth Low Energy) Beacon as input data and made decisions to affiliate the zone of the current region as output. In order to verify the proposed method, we constructed an experimental environment similar in size to an actual rail station using four of the beacon and two zones.

Cable damage identification of cable-stayed bridge using multi-layer perceptron and graph neural network

  • Pham, Van-Thanh;Jang, Yun;Park, Jong-Woong;Kim, Dong-Joo;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.241-254
    • /
    • 2022
  • The cables in a cable-stayed bridge are critical load-carrying parts. The potential damage to cables should be identified early to prevent disasters. In this study, an efficient deep learning model is proposed for the damage identification of cables using both a multi-layer perceptron (MLP) and a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), which is a robust program for modeling and analyzing bridge structures with low computational costs. The model based on the MLP and GNN can capture complex nonlinear correlations between the vibration characteristics in the input data and the cable system damage in the output data. Multiple hidden layers with an activation function are used in the MLP to expand the original input vector of the limited measurement data to obtain a complete output data vector that preserves sufficient information for constructing the graph in the GNN. Using the gated recurrent unit and set2set model, the GNN maps the formed graph feature to the output cable damage through several updating times and provides the damage results to both the classification and regression outputs. The model is fine-tuned with the original input data using Adam optimization for the final objective function. A case study of an actual cable-stayed bridge was considered to evaluate the model performance. The results demonstrate that the proposed model provides high accuracy (over 90%) in classification and satisfactory correlation coefficients (over 0.98) in regression and is a robust approach to obtain effective identification results with a limited quantity of input data.

Short-Term Water Demand Forecasting Algorithm Using AR Model and MLP (AR모델과 MLP를 이용한 단기 물 수요 예측 알고리즘 개발)

  • Choi, Gee-Seon;Yu, Chool;Jin, Ryuk-Min;Yu, Seong-Keun;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.713-719
    • /
    • 2009
  • In this paper, we develope a water demand forecasting algorithm using AR(Auto-regressive) and MLP(Multi-layer perceptron). To show effectiveness of the proposed method, we analyzed characteristics of time-series data collected in "A" purification plant at Jeon-Buk province during 2007-2008, and then performed the proposed method with various input factors selected through various analyses. As noted in experimental results, the performance of three types model such as multi-regressive, AR(Auto-regressive), and AR+MLP(Auto-regressive + Multi-layer perceptron) show 5.1%, 3.8%, and 3.6% with respect to MAPE(Mean Absolute Percentage Error), respectively. Thus, it is noted that the proposed method can be used to predict short-term water demand for the efficient operation of a water purification plant.

A Study on Automatic Phoneme Segmentation of Continuous Speech Using Acoustic and Phonetic Information (음향 및 음소 정보를 이용한 연속제의 자동 음소 분할에 대한 연구)

  • 박은영;김상훈;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.4-10
    • /
    • 2000
  • The work presented in this paper is about a postprocessor, which improves the performance of automatic speech segmentation system by correcting the phoneme boundary errors. We propose a postprocessor that reduces the range of errors in the auto labeled results that are ready to be used directly as synthesis unit. Starting from a baseline automatic segmentation system, our proposed postprocessor trains the features of hand labeled results using multi-layer perceptron(MLP) algorithm. Then, the auto labeled result combined with MLP postprocessor determines the new phoneme boundary. The details are as following. First, we select the feature sets of speech, based on the acoustic phonetic knowledge. And then we have adopted the MLP as pattern classifier because of its excellent nonlinear discrimination capability. Moreover, it is easy for MLP to reflect fully the various types of acoustic features appearing at the phoneme boundaries within a short time. At the last procedure, an appropriate feature set analyzed about each phonetic event is applied to our proposed postprocessor to compensate the phoneme boundary error. For phonetically rich sentences data, we have achieved 19.9 % improvement for the frame accuracy, comparing with the performance of plain automatic labeling system. Also, we could reduce the absolute error rate about 28.6%.

  • PDF

Text-Independent Speaker Verification Based on MLP Cohort Model (MLP 군집 모델에 기반한 어구독립 화자증명)

  • 이태승;최호진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.434-436
    • /
    • 2000
  • 본 논문에서는 기존의 확률적 화자군집 모델을 MLP(multi-layer perceptron)로 구현하는 방법과 원형 화자군집 모델이 갖는 문제를 해결할 수정 모델을 제시한다. 화자군집 모델은 화자등록 시간에 민감한 실용 환경에서 중요한 의미를 지닌다. 본 연구에서 사용한 인식단위는 여러 음소계열에서 지속적인 부분을 추출한 지속음이므로 화자등록과 증명 단계에서 특정한 어구에 한정되지 않는 어구독립 방식을 채택한다.

  • PDF

Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of ground water level (지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.903-911
    • /
    • 2022
  • Groundwater, one of the resources for supplying water, fluctuates in water level due to various natural factors. Recently, research has been conducted to predict fluctuations in groundwater levels using Artificial Neural Network (ANN). Previously, among operators in ANN, Gradient Descent (GD)-based Optimizers were used as Optimizer that affect learning. GD-based Optimizers have disadvantages of initial correlation dependence and absence of solution comparison and storage structure. This study developed Gradient Descent combined with Harmony Search (GDHS), a new Optimizer that combined GD and Harmony Search (HS) to improve the shortcomings of GD-based Optimizers. To evaluate the performance of GDHS, groundwater level at Icheon Yullhyeon observation station were learned and predicted using Multi Layer Perceptron (MLP). Mean Squared Error (MSE) and Mean Absolute Error (MAE) were used to compare the performance of MLP using GD and GDHS. Comparing the learning results, GDHS had lower maximum, minimum, average and Standard Deviation (SD) of MSE than GD. Comparing the prediction results, GDHS was evaluated to have a lower error in all of the evaluation index than GD.