• 제목/요약/키워드: Multi-layer. perceptron (MLP)

검색결과 234건 처리시간 0.023초

다층 퍼셉트론과 마코프 랜덤 필드 모델을 이용한 베이지안 결 분할 (Bayesian Texture Segmentation Using Multi-layer Perceptron and Markov Random Field Model)

  • 김태형;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제44권1호
    • /
    • pp.40-48
    • /
    • 2007
  • 이 논문은 다중 스케일 베이지안 관점에서 다층 퍼셉트론과 마코프 랜덤 필드를 사용한 새로운 결 분할 방법을 제안한다. 다층 퍼셉트론의 출력은 사후 확률을 모델링하므로 본 논문에서는 다중 스케일 웨이블릿 계수들을 다층 퍼셉트론의 입력으로 사용한다. 다층 퍼셉트론으로부터 구한 사후 확률과 MAP (maximum a posterior) 분류를 이용하여 각 스케일에서 결 분류를 수행한다. 또한 가장 섬세한 스케일에서 더 개선된 분할 결과를 얻기 위하여 모든 스케일에서 MAP 분류 결과들을 거친 스케일에서 섬세한 스케일까지 차례로 융합한다. 이런 과정은 한 스케일에서의 분류 정보와 그 인접한 보다 거친 스케일에서 얻어지는 문맥과 관련한 연역적 정보를 이용하여 MAP 분류를 행함으로써 이루어진다. 이 융합 과정에서, MRF (Markov random fields) 사전 모델이 평탄화 제한자로서 동작하고, 깁스 샘플러 (Gibbs sampler)는 MAP 분류기로서 동작한다. 제안한 분할 방법은 HMT (Hidden Markov Trees) 모델과 HMTseg 알고리즘을 이용한 결 분할 방법보다 더 좋은 성능을 보인다.

자가 조직화 지도의 커널 공간 해석에 관한 연구 (A New Self-Organizing Map based on Kernel Concepts)

  • 정성문;김기범;홍순좌
    • 정보처리학회논문지B
    • /
    • 제13B권4호
    • /
    • pp.439-448
    • /
    • 2006
  • Kohonen SOM(Self-Organizing Map)이나 MLP(Multi-Layer Perceptron), SVM(Support Vector Machine)과 같은 기존의 인식 및 클러스터링 알고리즘들은 새로운 입력 패턴에 대한 적응성이 떨어지고 학습 패턴 자체의 복잡도에 대한 학습률의 의존도가 크게 나타나는 등 여러 가지 단점이 있다. 이러한 학습 알고리즘의 단점은 문제의 학습 패턴자체의 특성을 잃지 않고 문제의 복잡도를 낮출 수 있다면 보완할 수 있다. 패턴 자체의 특성을 유지하며 복잡도를 낮추는 방법론은 여러 가지가 있으며, 본 논문에서는 커널 공간 해석 기법을 접근 방법으로 한다. 본 논문에서 제안하는 kSOM(kernel based SOM)은 원 공간의 데이터가 갖는 복잡도를 무한대에 가까운 초 고차원의 공간으로 대응시킴으로써 데이터의 분포가 원 공간의 분포에 비해 상대적으로 성긴(spase) 구조적 특정을 지니게 하여 클러스터링 및 인식률의 상승을 보장하는 메커니즘 을 제안한다. 클러스터링 및 인식률의 산출은 본 논문에서 제안한 새로운 유사성 탐색 및 갱신 기법에 근거하여 수행한다. CEDAR DB를 이용한 필기체 문자 클러스터링 및 인식 실험을 통해 기존의 SOM과 본 논문에서 제안한 kSOM과 성능을 비교한다.

딥러닝 기반의 수중 IoT 네트워크 BER 예측 모델 (Deep Learning based BER Prediction Model in Underwater IoT Networks)

  • 변정훈;박진훈;조오현
    • 융합정보논문지
    • /
    • 제10권6호
    • /
    • pp.41-48
    • /
    • 2020
  • 수중 IoT 네트워크에서 센서 노드는 지속적인 전력 공급이 어렵기 때문에 제한된 상황에서 소비 전력과 네트워크 처리량의 효율성이 매우 중요하다. 이를 위해 기존의 무선 네트워크에서는 SNR(Signal Noise Rate)과 BER(Bit Error Rate)의 높은 연관성을 기반으로 적응적으로 통신 파라미터를 선택하는 AMC(Adaptive Modulation and Coding) 기술을 적용한다. 하지만 본 논문의 실험 결과, 수중에서 SNR과 BER 사이의 상관 관계가 상대적으로 감소함을 확인하였다. 따라서 본 논문에서는 SNR과 함께 다중 파라미터를 동시에 사용하는 딥러닝 기반 BER 예측 모델(MLP, Multi-Layer Perceptron)을 적용한다. 제안하는 BER 예측 모델은 처리량이 가장 높은 통신 방법을 찾아낼 수 있고, 시뮬레이션 결과 85.2%의 높은 정확도와 네트워크 처리량은 기존 처리량보다 4.4배 높은 성능을 보여주는 우수한 성능을 확인하였다.

머신러닝을 이용한 철광석 가격 예측에 대한 연구 (Forecasting of Iron Ore Prices using Machine Learning)

  • 이우창;김양석;김정민;이충권
    • 한국산업정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.57-72
    • /
    • 2020
  • 철광석의 가격은 여러 국가와 기업들의 수요와 공급에 따라서 높은 변동성이 지속되고 있다. 이러한 비즈니스 환경에서 철광석의 가격을 예측하는 것은 중요해졌다. 본 연구는 머신러닝 기법을 이용하여 철광석이 거래되는 시점으로부터 한 달 전에 철광석 거래가격을 미리 예측하는 모형을 개발하고자 하였다. 예측 모형은 시계열 데이터를 활용한 예측 방법론으로 많이 활용되고 있는 시차분포 모형과 다층신경망 (Multi-layer perceptron), 순환신경망 (Recurrent neural network), 그리고 장단기 기억 네트워크 (Long short-term memory)와 같은 딥 러닝(Deep Learning) 모형을 사용하였다. 측정지표를 통해 개별 모형을 비교한 결과에 따르면, LSTM 모형이 예측 오차가 가장 낮은 것으로 나타났다. 또한, 앙상블 기법을 적용한 모형들을 비교한 결과, 시차분포와 LSTM의 앙상블 모형이 예측오차가 가장 낮은 것으로 나타났다.

Autism Spectrum Disorder Detection in Children using the Efficacy of Machine Learning Approaches

  • Tariq Rafiq;Zafar Iqbal;Tahreem Saeed;Yawar Abbas Abid;Muneeb Tariq;Urooj Majeed;Akasha
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.179-186
    • /
    • 2023
  • For the future prosperity of any society, the sound growth of children is essential. Autism Spectrum Disorder (ASD) is a neurobehavioral disorder which has an impact on social interaction of autistic child and has an undesirable effect on his learning, speaking, and responding skills. These children have over or under sensitivity issues of touching, smelling, and hearing. Its symptoms usually appear in the child of 4- to 11-year-old but parents did not pay attention to it and could not detect it at early stages. The process to diagnose in recent time is clinical sessions that are very time consuming and expensive. To complement the conventional method, machine learning techniques are being used. In this way, it improves the required time and precision for diagnosis. We have applied TFLite model on image based dataset to predict the autism based on facial features of child. Afterwards, various machine learning techniques were trained that includes Logistic Regression, KNN, Gaussian Naïve Bayes, Random Forest and Multi-Layer Perceptron using Autism Spectrum Quotient (AQ) dataset to improve the accuracy of the ASD detection. On image based dataset, TFLite model shows 80% accuracy and based on AQ dataset, we have achieved 100% accuracy from Logistic Regression and MLP models.

음성 신호와 얼굴 영상을 이용한 특징 및 결정 융합 기반 감정 인식 방법 (Emotion Recognition Method based on Feature and Decision Fusion using Speech Signal and Facial Image)

  • 주종태;양현창;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.11-14
    • /
    • 2007
  • 인간과 컴퓨터간의 상호교류 하는데 있어서 감정 인식은 필수라 하겠다. 그래서 본 논문에서는 음성 신호 및 얼굴 영상을 BL(Bayesian Learning)과 PCA(Principal Component Analysis)에 적용하여 5가지 감정 (Normal, Happy, Sad, Anger, Surprise) 으로 패턴 분류하였다. 그리고 각각 신호의 단점을 보완하고 인식률을 높이기 위해 결정 융합 방법과 특징 융합 방법을 이용하여 감정융합을 실행하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 융합하였으며, 특정 융합 방법은 SFS(Sequential Forward Selection)특정 선택 방법을 통해 우수한 특정들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 융합을 실행하였다.

  • PDF

화자 적응 방법들의 비교 (The Comparison of Speaker Adaptation Methods)

  • 황영수
    • 한국음향학회지
    • /
    • 제18권1호
    • /
    • pp.61-66
    • /
    • 1999
  • 본 논문은 화자 적응 방법 제안과 그 방법들의 성능을 검토한 것이다. 본 논문에서 제안 검토한 방법들은 최대사후확률추정(MAPE)방법, 음성 선형 특성을 이용한 방법, 다층 퍼셉트론(MLP)을 이용한 방법과 ARTMAP을 이용한 방법들이다. 각 방법들의 성능 평가를 위하여 한국어 숫자음으로 실험한 결과, 최대사후확률추정 방법과 반연속 HMM의 출력 확률적응, 음성 선형 특성 등 3방법을 결합한 방법이 가장 우수한 결과를 보였으며, 이와 비슷한 실험 결과를 ARTMAP을 이용한 화자 적응 방법에서 보였다.

  • PDF

인간 시각에 선형적인 계조 재현을 위한 프린터 보정 (Printer calibration for linearly perceived tone reproduction)

  • 이철희;이채수;강봉수;이응주;하영호
    • 전자공학회논문지S
    • /
    • 제36S권4호
    • /
    • pp.55-69
    • /
    • 1999
  • 일반적으로 잉크젯 프린터는 농도에 대해 선형적인 계조재현 특성을 나타낸다. 그러나 인간 시각의 경우 농도에 선형적인 프린터 출력에 대하여 비선형적인 지각반응을 나타낸다. 즉 농도가 큰 패치(patch)에 대해서는 명도나 색차에 대한 변별력이 작으며 농도가 작은 패치에 대해서는 좀 더 예민한 변별력을 갖는다. 따라서 농도에 선형적인 프린터 출력은 시각적인 활성영역을 줄이므로 프린터에서 구별되는 계조의 범위가 좁아진다. 그러므로 본 논문에서는 인간의 시지각 특성과 매우 상관도가 높은 CIELAB 색공간을 이용하여 균등한 명도 변화 및 색차를 나타내도록 하는 프린터 계조재현 알고리즘을 제안한다. 이때 시각적으로 균등한 변화를 나타내는 프린터의 입력값을 찾기 위해 다층 퍼셉트론 신경망(multi-layer perceptron neural network, MLP)을 이용하였다. 신경망의 학습을 위해 계조에 따른 패치를 만들고, 프린터 구동입력신호 및 패치의 측정된 값으로 신경망을 학습하였다. 학습된 신경망으로 선형적인 출력을 내는 프린터 구동신호를 찾고 LUT(look-up table)를 이용하여 프린터 입력 신호를 역으로 보정하였다. 결과, 보정된 프린터의 출력이 선형적인 계조 변화를 보였고 변화가 인지되는 계조의 범위가 늘어났으며 실형상에 대한 실험에 있어서도 우수한 화질을 보였다.

  • PDF

매니퓰레이터의 신경제어를 위한 새로운 학습 방법 (A new training method for neuro-control of a manipulator)

  • 경계현;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1022-1027
    • /
    • 1991
  • A new method to control a robot manipulator by neural networks is proposed. The controller is composed of both a PD controller and a neural network-based feedforward controller. MLP(multi-layer perceptron) neural network is used for the feedforward controller and trained by BP(back-propagation) learning rule. Error terms for BP learning rule are composed of the outputs of a PD controller and the acceleration errors of manipulator joints. We compare the proposed method with existing ones and contrast performances of them by simulation. Also, We discuss the real application of the proposed method in consideration of the learning time of the neural network and the time required for sensing the joint acceleration.

  • PDF

제한적 상태지속시간을 갖는 HMM을 이용한 고립단어 인식 (Isolated Word Recognition Using Hidden Markov Models with Bounded State Duration)

  • 이기희;임인칠
    • 전자공학회논문지B
    • /
    • 제32B권5호
    • /
    • pp.756-764
    • /
    • 1995
  • In this paper, we proposed MLP(MultiLayer Perceptron) based HMM's(Hidden Markov Models) with bounded state duration for isolated word recognition. The minimum and maximum state duration for each state of a HMM are estimated during the training phase and used as parameters of constraining state transition in a recognition phase. The procedure for estimating these parameters and the recognition algorithm using the proposed HMM's are also described. Speaker independent isolated word recognition experiments using a vocabulary of 10 city names and 11 digits indicate that recognition rate can be improved by adjusting the minimum state durations.

  • PDF