• 제목/요약/키워드: Multi-layer perceptron

검색결과 443건 처리시간 0.037초

다층퍼셉트론 기반 리 샘플링 방법 비교를 위한 마이크로어레이 분류 예측 에러 추정 시스템 (Classification Prediction Error Estimation System of Microarray for a Comparison of Resampling Methods Based on Multi-Layer Perceptron)

  • 박수영;정채영
    • 한국정보통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.534-539
    • /
    • 2010
  • 게놈 연구에서 수천 개의 특징들은 비교적 작은 샘플들로부터 모아진다. 게놈 연구의 목적은 미래 관찰들의 결과를 예측하는 분류기를 만드는 것이다. 분류기를 만들기 위해서는 특징 선택, 모델 선택 그리고 예측 평가 등의 3단계 과정을 거친다. 본 논문은 예측 평가에 초점을 맞추고 모든 슬라이드의 사분위수를 똑같게 맞추는 quantilenormalization 적용하여 마이크로어레이 데이터를 표준화 한 후 특징 선택에 앞서 예측 모델의 '진짜' 예측 에러를 평가하기 위해 몇 개의 방법들을 비교하는 시스템을 고안하고 방법들의 예측 에러를 비교 분석 하였다. LOOCV는 전체적으로 작은 MSE와 bias를 나타내었고, 크기가 작은 샘플에서 split 방법과 2-fold CV는 매우 좋지 않는 결과를 보였다. 계산적으로 번거로운 분석에 대해서는 10-fold CV가 LOOCV보다 오히려 더 낳은 경향을 보였다.

추천을 위한 신경망 기반 협력적 여과 (Collaborative Filtering for Recommendation based on Neural Network)

  • 김은주;류정우;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.457-466
    • /
    • 2004
  • 추천은 과다하게 제공되는 정보로부터 사용자 개인의 취향에 알맞은 정보만을 제공하는 서비스이다. 최근 이러한 서비스는 정보제공자와 인터넷 사용자들이 많은 관심을 가지고 있다. 또한, 서비스를 위해 가장 널리 사용되는 방법은 협력적 여과방법이다. 협력적 여과방법은 특정 사용자와 관련 있는 사용자들에 대한 목표 항목의 선호도를 이용하거나 목표 항목과 관련 있는 항목들에 대한 특정 사용자의 선호도를 이용하여 특정 사용자에게 목표 항목을 추천하는 방법이다. 본 논문에서는 신경망 기반 협력적 여과 방법을 제안한다. 제안한 방법은 신경망을 이용하여 사용자 흑은 항목들 간의 선호 상관관계를 학습시킴으로써 모델을 생성하고 생성된 모델을 사용하여 추천할 목표 항목의 선호도를 추정하는 방법이다. 특히, 본 논문에서는 희소성 문제를 해결하기 위해 다양한 정보를 융합하는 방법과 보다 성능을 향상시키기 위해 목표 항목과 관련 있는 항목들 또는 특정 사용자와 관련 있는 사용자들을 선택하는 것에 대해 제시한다. 마지막으로 EachMovie 데이타를 이용한 실험들을 통해 제안한 방법이 기존 방법들 보다 우수한 성능을 보이는 것을 확인할 수 있다.

컬러정보와 오류역전파 알고리즘을 이용한 교통표지판 인식 (Traffic Sign Recognition Using Color Information and Error Back Propagation Algorithm)

  • 방걸원;강대욱;조완현
    • 정보처리학회논문지D
    • /
    • 제14D권7호
    • /
    • pp.809-818
    • /
    • 2007
  • 본 논문에서는 컬러정보를 이용하여 교통표지판 영역을 추출하고, 추출된 이미지의 인식을 위해 오류 역전파 학습알고리즘을 적용한 교통표지판 인식시스템을 제안한다. 제안된 방법은 교통표지판의 컬러를 분석하여 영상에서 교통표지판의 후보영역을 추출한다. 후보영역을 추출하는 방법은 RGB 컬러 공간으로부터 YUV, YIQ, CMYK 컬러 공간이 가지는 특성을 이용한다. 형태처리는 교통표지판의 기하학적 특성을 이용하여 영역을 분할하고, 교통표지판 인식은 학습이 가능한 오류역전파 학습알고리즘을 이용하여 인식한다. 실험결과 제안된 시스템은 다양한 크기의 입력영상과 조명의 차이에 영향을 받지 않고 후보영역 추출과 인식에 우수한 성능이 입증되었다.

인쇄된 한글 문서의 폰트 인식 (The Font Recognition of Printed Hangul Documents)

  • 박문호;손영우;김석태;남궁재찬
    • 한국정보처리학회논문지
    • /
    • 제4권8호
    • /
    • pp.2017-2024
    • /
    • 1997
  • 본 논문은 새로운 형태의 문서 통신 방식인 지적 커뮤니케이션 시스템(IICS : Intelligent Image Communication System)의 구현을 위하여 한글 문서를 대상으로 문서를 구성하는 문자의 서체와 문자의 크기 및 기울기를 인식하고 방법을 제안한다. 서체를 인식하기 위하여 문서에서 일정한 크기의 블럭을 추출하여 주파수 분석을 하였고, 단어의 외접 사각형의 수직 거리를 이용하여 문자의 크기를 인식하였다. 문자의 기울기를 인식하기 위하여 수직 방향의 투영 프로파일을 이용하였다. 서체 인식을 위한 인식기의 가변적인 히든 노드를 이용하여 오류 역전파 알고리즘으로 학습된 MLP(Multi-layer Perceptron)를 사용하였으며, 문자의 크기와 기울기를 분류하기 위하여 Mahalanobis distance를 이용하였다. 실험을 통하여 서체 분류는 10개의 서체에 대하여 평균 95.19%의 인식률을 얻었고, 문자의 크기 분류는 5가지의 문자 크기에 대하여 평균 97.34%의 인식률을 얻었으며, 문자의 기울기는 평균 89.09%의 인식률을 얻음으로써 제안된 방법의 유용성을 입증하였다.

  • PDF

Long Short-Term Memory를 활용한 건화물운임지수 예측 (Prediction of Baltic Dry Index by Applications of Long Short-Term Memory)

  • 한민수;유성진
    • 품질경영학회지
    • /
    • 제47권3호
    • /
    • pp.497-508
    • /
    • 2019
  • Purpose: The purpose of this study is to overcome limitations of conventional studies that to predict Baltic Dry Index (BDI). The study proposed applications of Artificial Neural Network (ANN) named Long Short-Term Memory (LSTM) to predict BDI. Methods: The BDI time-series prediction was carried out through eight variables related to the dry bulk market. The prediction was conducted in two steps. First, identifying the goodness of fitness for the BDI time-series of specific ANN models and determining the network structures to be used in the next step. While using ANN's generalization capability, the structures determined in the previous steps were used in the empirical prediction step, and the sliding-window method was applied to make a daily (one-day ahead) prediction. Results: At the empirical prediction step, it was possible to predict variable y(BDI time series) at point of time t by 8 variables (related to the dry bulk market) of x at point of time (t-1). LSTM, known to be good at learning over a long period of time, showed the best performance with higher predictive accuracy compared to Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN). Conclusion: Applying this study to real business would require long-term predictions by applying more detailed forecasting techniques. I hope that the research can provide a point of reference in the dry bulk market, and furthermore in the decision-making and investment in the future of the shipping business as a whole.

분포형 모형과 인공신경망을 활용한 유출 예측 (Run-off Forecasting using Distributed model and Artificial Neural Network model)

  • 김원진;이용관;정충길;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2019
  • 본 연구에서는 분포형 수문 모형 Drying Stream Assessment Tool and Water Flow Tracking (DrySAT-WTF)을 활용해 우리나라의 1976년부터 2015년까지의 유출량을 산정하고, 이를 다층퍼셉트론(Multi Layer Perceptron) 인경신경망 모형(Artificial Neural Network Model)에 적용해 미래 유출을 예측하였다. DrySAT-WFT은 전국 표준 유역을 대상으로 하천 건천화 원인 추적 및 평가를 위해 개발된 모형으로 유출모의를 위한 기상자료 외에 건천화 영향 요소를 고려하기 위한 산림 높이, 도로망, 지하수 이용량, 토지이용, 토심 변화에 대한 DB를 적용 가능한 것이 특징이다. DrySAT-WFT를 위한 기상자료로 모의 기간에 대한 일별 강우량, 상대습도, 평균풍속, 평균 및 최고, 최저 기온, 일조시간을 구축하였으며, 연대별 건천화 영향 요소 DB를 구축하여 적용하였다. 전국 다목적 댐 보 12지점의 유량을 활용해 모형의 보정(2005-2010) 및 검증(2011-2015)을 실시한 결과, 평균 결정계수(Coefficient of determination, $R^2$)는 0.76, 모형효율성계수(Nash-Sutcliffe efficiency, NSE)는 0.62, 평균제곱근오차(average root mean square error, RMSE)는 3.09로 신뢰성 있는 유출 모의 결과를 나타내었다. 미래 유출량 예측을 위한 MLP-ANN은 1976년부터 2015년까지의 유출 모의 결과를 Training Set으로 훈련하여 $R^2$가 0.5 이상이 되어 신뢰성을 확보하였고, 2016년부터 2018년까지의 기간을 1개월 단위로 실제 유출량과 예측 유출량을 비교하며 적용성을 검증 및 향상시켰다.

  • PDF

타브 숫자 인식을 위한 기계 학습 알고리즘의 성능 비교 (Performance Comparison of Machine Learning Algorithms for TAB Digit Recognition)

  • 허재혁;이현종;황두성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권1호
    • /
    • pp.19-26
    • /
    • 2019
  • 본 논문에서는 기타 타브 악보에서 추출한 프렛 번호를 대상으로 학습 알고리즘의 분류 성능을 비교한다. 타브 악보로부터 세그먼트를 통해 추출된 타브 숫자 데이터는 타브 선과 악보 기호가 포함하기 때문에 레이블링 기법과 비선형 필터를 이용하여 프렛 숫자를 추출한다. 추가적인 데이터 확보를 위해 전처리가 수행된 데이터에 대해 4 방향으로 이동 연산을 수행한다. 선택된 학습 모델은 베이지안 분류기, 지지벡터기기, 프로토타입 기반 학습, 다층 신경망 그리고 합성곱 신경망 모델 등이다. 실험 결과 베이지안 분류기는 85.0% 평균 정확도를 보였고 나머지 분류기는 99.0% 이상의 평균 정확도를 보였다. 일반화 성능과 전처리 단계를 고려 시 합성곱 신경망이 다른 학습 모델들보다 우수하다.

네트워크 침입 탐지를 위한 최적 특징 선택 알고리즘 (An optimal feature selection algorithm for the network intrusion detection system)

  • 정승현;문준걸;강승호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.342-345
    • /
    • 2014
  • 기계학습을 이용한 네트워크 침입탐지시스템은 선택된 특징 조합에 따라 정확성 및 효율성 측면에서 크게 영향을 받는다. 하지만 일반적으로 사용되는 침입탐지용 특징들로부터 최적의 조합을 찾아내는 일은 많은 계산량을 요구한다. 예를 들어 n개로 구성된 특징들로부터 가능한 특징조합은 $2^n-1$ 개이다. 본 논문에서는 이러한 문제를 해결하기 위한 최적 특징 선택 알고리즘을 제시한다. 제안한 알고리즘은 최적화 문제 해결을 위한 대표적인 메타 휴리스틱 알고리즘인 지역탐색 알고리즘에 기반 한다. 또한 특징 조합을 평가를 위해 선택된 특징 요소와 k-means 군집화 알고리즘을 이용해 구해진 군집화의 정확성을 비용함수로 사용한다. 제안한 특징 선택 알고리즘의 평가를 위해 NSL-KDD 데이터와 인공 신경망을 사용해 특징 모두를 사용한 경우와 비교한다.

  • PDF

신경회로망을 이용한 차량의 색상 인식 (Vehicle Color Recognition Using Neural-Network)

  • 김태형;이정화;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.731-734
    • /
    • 2009
  • 본 논문에서는 차량을 포함하고 있는 영상에서 차량의 색상을 인식하는 방법을 제안한다. 영상에서 차량의 색상 특징 벡터를 추출해 다층 신경회로망인 backpropagation 학습 알고리즘을 이용하여 차량의 색상을 인식하게 된다. backpropagation 학습 알고리즘의 입력으로 사용되는 특징벡터는 RGB와 HSI(Hue-Saturation-Intensity) 색상 모델을 이용하여 색상 특징 벡터를 구성하고 각각 신경회로망의 입력으로 사용된다. 차량의 색상 인식은 가장 많이 발견되는 차량의 색상 가운데 7가지 색상으로 흰색, 은색, 검정색, 빨강색, 노란색, 파란색, 초록색으로 인식한다. 제안한 방법의 성능평가를 위해 차량을 포함하고 있는 영상을 이용하여 색상 인식 성능을 실험 하였다.

  • PDF

딥러닝의 얼굴 정서 식별 기술 활용-대학생의 심리 건강을 중심으로 (Exploration of deep learning facial motions recognition technology in college students' mental health)

  • 리파;조경덕
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.333-340
    • /
    • 2022
  • 코로나19는 모두로 하여금 초조하고 불안하게 만들고, 사람들간에는 거리두기가 필요하다. 코로나19로 인해 심리적으로 초조하고 불안 해 지고 거리두기가 필요해졌다. 대학교에서는 학기 초에 정신건강에 대한 단체 평가와 검사가 이루어진다. 본 연구에서는 다층감지기 신경망 모델을 채택하고 훈련시켜 딥러닝을 진행했다. 훈련이 끝난 후, 실제 사진과 동영상을 입력하고, 안면탐지를 진행하고, 표본에 있는 사람의 얼굴 위치를 알아낸 후, 그 감정을 다시 분류하고, 그 표본의 예측한 감정 결과를 그림으로 보여주었다. 결과는 다음과 같다. 테스트 시험에서는 93.2%의 정확도를 얻었고, 실제 사용에서는 95.57%의 정확도를 얻었다. 그중 분노의 식별율은 95%, 혐오의 식별율은 97%, 행복의 식별율은 96%, 공포의 식별율은 96%, 슬픔의 식별율은 97%, 놀라움의 식별율은 95%, 중립의 식별율은 93%이었다. 본 연구의 고효율적 정서 식별 기술은 학생들의 부정적 정서를 포착하는 객관적 데이터를 제공 할 수 있다. 딥러닝의 감정식별 시스템은 심리건강을 향상하기 위한 데이터들을 제공할 수 있다.