• Title/Summary/Keyword: Multi-intuitionistic fuzzy sets

Search Result 6, Processing Time 0.016 seconds

Multi-Intuitionistic Fuzzy Sets and Intuitionistic Fuzzy P Systems

  • Abd-Allah, M. Azab;Ghareeb, A.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.284-287
    • /
    • 2008
  • In this paper, we introduce multi-intuitionistic fuzzy sets and intuitionistic fuzzy hybrid sets. The basic operations between such structures are defined. The use of these structures in the definition of intuition is tic fuzzy variants of P systems and their properties are presented.

Group Decision Making Using Intuitionistic Hesitant Fuzzy Sets

  • Beg, Ismat;Rashid, Tabasam
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.181-187
    • /
    • 2014
  • Dealing with uncertainty is always a challenging problem. Intuitionistic fuzzy sets was presented to manage situations in which experts have some membership and non-membership value to assess an alternative. Hesitant fuzzy sets was used to handle such situations in which experts hesitate between several possible membership values to assess an alternative. In this paper, the concept of intuitionistic hesitant fuzzy set is introduced to provide computational basis to manage the situations in which experts assess an alternative in possible membership values and non-membership values. Distance measure is defined between any two intuitionistic hesitant fuzzy elements. Fuzzy technique for order preference by similarity to ideal solution is developed for intuitionistic hesitant fuzzy set to solve multi-criteria decision making problem in group decision environment. An example is given to illustrate this technique.

Multi-person Multi-attribute Decision Making Problems Based on Interval-valued Intuitionistic Fuzzy Information

  • Park, Jin-Han;Kwun, Young-Chel;Son, Mi-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.287-295
    • /
    • 2010
  • Based on the interval-valued intuitionistic fuzzy hybrid geometric (IIFHG) operator and the interval-valued intuitionistic fuzzy weighted geometric (IIFWG) operator, we investigate the group decision making problems in which all the information provided by the decision-makers is presented as interval-valued in tuitionistic fuzzy decision matrices where each of the elements is characterized by interval-valued intuitionistic fuzzy numbers, and the information about attribute weights is partially known. Anumerical example is used to illustrate the applicability of the proposed approach.

A Generalized Intuitionistic Fuzzy Soft Set Theoretic Approach to Decision Making Problems

  • Park, Jin-Han;Kwun, Young-Chel;Son, Mi-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • The problem of decision making under imprecise environments are widely spread in real life decision situations. We present a method of object recognition from imprecise multi observer data, which extends the work of Roy and Maji [J Compu. Appl. Math. 203(2007) 412-418] to generalized intuitionistic fuzzy soft set theory. The method involves the construction of a comparison table from a generalized intuitionistic fuzzy soft set in a parametric sense for decision making.

A Multi-Attribute Intuitionistic Fuzzy Group Decision Method For Network Selection In Heterogeneous Wireless Networks Using TOPSIS

  • Prakash, Sanjeev;Patel, R.B.;Jain, V.K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5229-5252
    • /
    • 2016
  • With proliferation of diverse network access technologies, users demands are also increasing and service providers are offering a Quality of Service (QoS) to satisfy their customers. In roaming, a mobile node (MN) traverses number of available networks in the heterogeneous wireless networks environment and a single operator is not capable to fulfill the demands of user. It is crucial task for MN for selecting a best network from the list of networks at any time anywhere. A MN undergoes a network selection situation frequently when it is becoming away from the home network. Multiple Attribute Group Decision (MAGD) method will be one of the best ways for selecting target network in heterogeneous wireless networks (4G). MAGD network selection process is predominantly dependent on two steps, i.e., attribute weight, decision maker's (DM's) weight and aggregation of opinion of DMs. This paper proposes Multi-Attribute Intuitionistic Fuzzy Group Decision Method (MAIFGDM) using TOPSIS for the selection of the suitable candidate network. It is scalable and is able to handle any number of networks with large set of attributes. This is a method of lower complexity and is useful for real time applications. It gives more accurate result because it uses Intuitionistic Fuzzy Sets (IFS) with an additional parameter intuitionistic fuzzy index or hesitant degree. MAIFGDM is simulated in MATLAB for its evaluation. A comparative study of MAIFDGM is also made with TOPSIS and Fuzzy-TOPSIS in respect to decision delay. It is observed that MAIFDGM have low values of decision time in comparison to TOPSIS and Fuzzy-TOPSIS methods.

Lotfi A. Zadeh, the founder of fuzzy logic (퍼지 논리의 시조 Zadeh)

  • Lee, Seung-On;Kim, Jin-Tae
    • Journal for History of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.29-44
    • /
    • 2008
  • Fuzzy logic is introduced by Zadeh in 1965. It has been continuously developed by many mathematicians and knowledge engineers all over the world. A lot of papers concerning with the history of mathematics and the mathematical education related with fuzzy logic, but there is no paper concerning with Zadeh. In this article, we investigate his life and papers about fuzzy logic. We also compare two-valued logic, three-valued logic, fuzzy logic, intuisionistic logic and intuitionistic fuzzy sets. Finally we discuss about the expression of intuitionistic fuzzy sets.

  • PDF