• Title/Summary/Keyword: Multi-fluid

Search Result 828, Processing Time 0.023 seconds

Energy Efficient Design of a Jet Pump by Ensemble of Surrogates and Evolutionary Approach

  • Husain, Afzal;Sonawat, Arihant;Mohan, Sarath;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.265-276
    • /
    • 2016
  • Energy systems working coherently in different conditions may not have a specific design which can provide optimal performance. A system working for a longer period at lower efficiency implies higher energy consumption. In this effort, a methodology demonstrated by a jet pump design and optimization via numerical modeling for fluid dynamics and implementation of an evolutionary algorithm for the optimization shows a reduction in computational costs. The jet pump inherently has a low efficiency because of improper mixing of primary and secondary fluids, and multiple momentum and energy transfer phenomena associated with it. The high fidelity solutions were obtained through a validated numerical model to construct an approximate function through surrogate analysis. Pareto-optimal solutions for two objective functions, i.e., secondary fluid pressure head and primary fluid pressure-drop, were generated through a multi-objective genetic algorithm. For the jet pump geometry, a design space of several design variables was discretized using the Latin hypercube sampling method for the optimization. The performance analysis of the surrogate models shows that the combined surrogates perform better than a single surrogate and the optimized jet pump shows a higher performance. The approach can be implemented in other energy systems to find a better design.

A Physical-based Particle Method for Small Scale Feature in Multi-phase Fluid Simulation (다상 유체 시뮬레이션에서 격자 크기 이하의 미세한 특징 표현을 위한 물리기반 입자 기법)

  • Lee, Ho-Young;Hong, Jeong-Mo;Kim, Chang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.445-450
    • /
    • 2009
  • This paper presents a multi-phase fluid simulation that realistically represents small scale details. We achieve this by creating escaped particles based on physical methods. Escaped particles are the remained particles after correcting levelset. Generation of escaped particles in this paper differs from previous works; this fluid simulation is extended by adding lift force and drag force to positive escaped particles. And negative escaped particles represent droplet or splash effect; when they are merged into the negative levelset value, they affect the nodes' velocity (two-way coupling). This simulation that uses positive and negative escaped particles deals with detailed fluid motions dynamically in small scale.

  • PDF

Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow

  • Park, Sung-Woo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.559-573
    • /
    • 2012
  • An adaptive modeling and simulation technique is introduced for the effective and reliable fluid-structure interaction analysis using MSC/Dytran for large-scale complex pressurized liquid containment. The proposed method is composed of a series of the global rigid sloshing analysis and the locally detailed fluid-structure analysis. The critical time at which the system exhibits the severe liquid sloshing response is sought through the former analysis, while the fluid-structure interaction in the local region of interest at the critical time is analyzed by the latter analysis. Differing from the global coarse model, the local fine model considers not only the complex geometry and flexibility of structure but the effect of internal pressure. The locally detailed FSI problem is solved in terms of multi-material volume fractions and the flow and pressure fields obtained by the global analysis at the critical time are specified as the initial conditions. An in-house program for mapping the global analysis results onto the fine-scale local FSI model is developed. The validity and effectiveness of the proposed method are verified through an illustrative numerical experiment.

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

Release and Characterization of Multiple Coated Pellets Containing Melatonin (멜라토닌이 함유된 다층 코팅 펠렛의 방출 및 특성분석)

  • Kang, Bok-Ki;Khang, Gil-Son;Kim, Jong-Min;Jeung, Sang-Young;Lee, Hai-Bang;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.3
    • /
    • pp.179-185
    • /
    • 2003
  • Melatonin (MT) is an indole amide pineal hormone. It has not only very short half-life but also pH-sensitive property. The sustained release dosage form which delivers MT in a circadian fashion over 8 h is clinical value. The purpose of this study is to prepare sugar beads using multiple coating methods and enteric-coated in a sustained release to evaluate in vitro release characteristics in simulated gastric and intestinal fluids. The $Eudragit^{\circledR}$ as a polymer, sustained release membrane, and triethylcitrate (TEC) as a plasticzer were used. Multi-coated melatonin delivery system was composed of sugar, various excipients, $Eudragit^{\circledR}$ and enteric materials (e.g. hydroxy propyl methyl cellulose phthalate, HPMCP), and prepared by fluid bed coater. The dissolution test was carried out using the basket method at a stirring speed of 100 rpm at $37^{\circ}C$ in simulated gastric (pH 1.2) and intestinal fluid (pH 7.4). The released amount of MT was determined by High performance liquid chromatography method. The morhologies of surface and cross section of multi-coated beads were observed by scanning electron microscope. Size of multi-coated sugar beads was ranged over $1000{\sim}1300\;{\mu}m$. The release rate of MT from coated beads was limited in simulated gastric fluid (pH 1.2), but it was sustained in intestinal fluid (pH 7.4) during $3{\sim}8$ hours. The MT beads may provide small-intestine-targeted device for oral delivery. Studies on animal and relative experiment are in process.

Historical Perspective on Fluid Machinery Flow Optimization in an Industry

  • Goto, Akira
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • Fluid-dynamic design of fluid machinery had heavily relied on empiricism and experimental observations for many years. Since 1980s, thanks to the advancements in Computational Fluid Dynamics (CFD), a variety of flow physics have been revealed. The contribution by CFD is indispensable; however, the challenge is required not only on the advancements in CFD technologies but also innovation of "design (optimization) technologies" because of the complex interactions between 3-D flow fields and the complex 3-D flow passage configurations, etc. This paper presents historical perspective on fluid machinery flow optimization in an industry with some messages for the future.

An Investigation of Lattice Boltzmann Multi-phase Model and it Application (래티스볼츠만 다상류 모델의 검토 및 응용)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

Vibration Stability Analysis of Multi wall Carbon Nanotubes Considering Conveying Fluid Effect (유체유동효과를 고려한 다중벽 탄소나노튜브의 진동 및 안정성 해석)

  • Yun, Kyung-Jae;Choi, Jong-Woon;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.219-224
    • /
    • 2012
  • In this paper, vibration and flow-induced flutter instability analysis of cantilever multiwall carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.

  • PDF

Multi-Objective Design Exploration and its Applications

  • Obayashi, Shigeru;Jeong, Shin-Kyu;Shimoyama, Koji;Chiba, Kazuhisa;Morino, Hiroyuki
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.247-265
    • /
    • 2010
  • Multi-objective design exploration (MODE) and its applications are reviewed as an attempt to utilize numerical simulation in aerospace engineering design. MODE reveals the structure of the design space based on trade-off information. A self-organizing map (SOM) is incorporated into MODE as a visual data mining tool for the design space. SOM divides the design space into clusters with specific design features. This article reviews existing visual data mining techniques applied to engineering problems. Then, we discuss three applications of MODE: multidisciplinary design optimization for a regional-jet wing, silent supersonic technology demonstrator and centrifugal diffusers.

Numerical evaluation of hypothetical core disruptive accident in full-scale model of sodium-cooled fast reactor

  • Guo, Zhihong;Chen, Xiaodong;Hu, Guoqing
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2120-2134
    • /
    • 2022
  • A hypothetical core destructive accident (HCDA) has received widespread attention as one of the most serious accidents in sodium-cooled fast reactors. This study combined recent advantages in numerical methods to realize realistic modeling of the complex fluid-structure interactions during HCDAs in a full-scale sodium-cooled fast reactor. The multi-material arbitrary Lagrangian-Eulerian method is used to describe the fluid-structure interactions inside the container. Both the structural deformations and plug rises occurring during HCDAs are evaluated. Two levels of expansion energy are considered with two different reactor models. The simulation results show that the container remains intact during an accident with small deformations. The plug on the top of the container rises to an acceptable level after the sealing between the it and its support is destroyed. The methodology established in this study provides a reliable approach for evaluating the safety feature of a container design.