• Title/Summary/Keyword: Multi-floor

Search Result 339, Processing Time 0.028 seconds

Computer Simulation for the Thermal Analysis of the Energy Storage Board (에너지 축열보드 열해석을 위한 컴퓨터 수치해석)

  • 강용혁;엄태인;곽희열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.224-232
    • /
    • 1999
  • Latent heat storage system using micro-encapsuled phase change material is effective method for floor heating of house and building. The temperature profile in capsule block and flow rate of hot water are important parameters for the development of heat storage system. In the present study, a mathematical model based on 3-D, non-steady state, Navier-Stokes equations, scalar conservation equations and turbulence model ($\kappa$-$\varepsilon$), is used to predict the temperature profiles in capsule and the velocity vectors in hot water pipe. The multi-block grids and fine grids embedding are used to join the circle in hot water pipe and square in capsule block. The phase change process of the capsule is quite complex not only because the size of phase change material is very small, but also because phase change material is mixed with the cement to form thermal storage block. In calculation, it's assumed that the phenomena of phase change is limited only the thermal properties of phase change material and the change of boundary is not happened in capsule. The purpose of this study is to calculate the temperature profiles in capsule block and velocity vectors in hot water pipe using the numerical calculation. Two kinds of thermal boundary condition were considered, the first (case 1) is the adiabatic condition for the both outside surfaces of the wall, the second (case 2) is the case in which one surface is natural convection with atmosphere and another surface is adaibatic. Calculation results are shown that the temperature profile in capsule block for case 1 is higher than that for case 2 due to less heat loss in adaibatic surface. Specially, in the domain of near Y=0, the difference of temperature is greater in case 1 than in case 2. The detailed experimental data of capsule block on the temperature profile and the thermal properties such as specific heat and coefficient of heat transfer with the various temperature are required to predict more exact phenomena of heat transfer.

  • PDF

Utilization of Charcoal as an Environmentally Friendly Building Materials (II) - A Study on the Energy Saving and Sound Insulation Characteristics of Building Materials Prepared with Charcoal - (목탄을 이용한 친환경 건축자재 이용기술(II) - 목탄 함유 건축자재의 에너지 절감 및 차음 특성에 관한 연구)

  • Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.41-52
    • /
    • 2011
  • This study was carried out to investigate the effect of energy saving and sound insulation of building materials mixed with charcoal. To investigate the functionality of building based on the difference of construction materials, three different experimental buildings were constructed. They were buildings built with the conventional construction materials (A), the charcoal construction materials (B), and the charcoal-sericite construction materials (C). The study showed that energy consumption could be reduced approximately 9.5% and 14.5% by replacing A with B and C, respectively. Especially, it is revealed that the lower outdoor temperature was, the higher energy saving effect was. Also, after shutoff the boiler switch the decrease rate of room temperature of the one using B was lower than those of others using A and C so that the room temperature at the building using B was higher by $3.5{\sim}4.2^{\circ}C$ in the 1 meter air above the ground and by $4.4{\sim}5.4^{\circ}C$ on the floor surface after 12 hours passed. In the building noise test the heavy-and light-weight impact sound of the plate, represented by criterion of noise between floors in multi-story building, tended to decrease in the test sample containing charcoal.

A Study on the Ancient Architecture in view of the Stone Remains (focused on the 3 Kingdom Period and Unificated Shilla Period) (석조유구(石造遺構)를 통한 한국(韓國) 고대건축(古代建築)에 관한 연구(硏究) -삼국시대와 통일신라시대를 중심으로-)

  • Cheon, Deuk-Youm;Park, Ji-Min
    • Journal of architectural history
    • /
    • v.8 no.3 s.20
    • /
    • pp.23-38
    • /
    • 1999
  • The purpose of this study is to analogize the appearance of Korean Ancient Architecture in view of the Stone Remains from 3 Kingdom Period to Unificated Shilla Period. But in these period, there is no building remains but some stupas and fine arts. Especially, there are many architectural appearance and revealing signature in these Historical Stone remains. Architectural elements which are analogized by stone remains what has value as historical materials by preservation of original form from 3 Kingdom Preiod to Unificated Shilla Period are as follows : 1) Platform, the representative characteristic of Korean traditional architecture, was frame structure and accumulate structure. And circular or square footing stood a same shape column on it is put on the platform. 2) In the case of column, there used entasis column and inclined column and circular chamfer technique was applied on the top side of it. Upper side of column, capital and head pentrating tie that small bearing block was put on the center of it was joined. And longitu야nal rest(長舌) supported a cross beam. Capital and small bearing block had no bottom heel, and heel side was curved and straight. Centered bracket structure was often used, and multi bracket structure is not used yet. Inward incline technique was used. 3) Inward opening pair door which had lintel, threshold, doorjamb was usually used, Fixing stone was used for structural safety, and circular handle and lock was used for decoration. Handrail was used on the edge of wooden floor for decorative effect and safety. 4) Square rafter and circular rafter were used in the same period and so did flying rafter. Double eaves and single eave were used in the same period but, single eave was usually used. In this period, square rafter was usually used. This would be studied more by comparing with Japanese wooden architecture. 5) Hipped roof was used and half-hipped roof was not used yet. In front of th hip, there are small sculpture called Jap-Sang(雜像), and windbell was hang on the end of the hip rafter. Concave roof tile, convex roof tile, round eaver tile, decorative tile at end of roof ridge were used. Lotus style was well used on the face of roof tile for decoration. From the results of this study, wooden architecture of Unificated Shilla period was simple compare to Koryo dynasty and Chosun dynasty but, it had some brilliant character. It was hard work that analogized the form of non-existent wood architecture of Ancient Korean period by restricted stone remains. But, in addition to the results of this study and research of old documentations, more study should be go on.

  • PDF

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

Proposal of Construction System to prevent Dongbari Collapse by applying IT Convergence Technology (IT 융합기술을 적용한 동바리 붕괴사고 방지를 위한 건설공사 시스템 제안)

  • Jeon, Kyong-Deck;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.113-120
    • /
    • 2020
  • Safety accidents, called industrial accidents in construction work, are causing a lot of casualties, property damage and social controversy in the event of an accident, causing the construction to lose public confidence. The risk of safety accidents at construction sites may continue to increase as the construction of high-rise, large-scale, and multi-purpose complex buildings has increased in recent years. In particular, the most frequently constructed apartment construction among reinforced concrete buildings is designed and constructed with a wall-like structure with no beams for each floor, while the lower floors are made of lamen with columns and beams. As a result, the transfer beam or transfer slab to withstand the upper load is installed on the upper part of the Ramen structure, so the system Dongbari, which is installed as a temporary material during concrete laying construction, may collapse at any time during plowing and curing. The purpose of this study is to apply IT convergence technology to prevent the collapse of the system Dongbari during concrete installation, and to apply many of the variables that may occur during construction on a case-by-case basis to check the stability of the system Dongbari and to propose a model of the anti-conducting prediction system.

Analysis of Cooling Air Current and Efficiency of Air Conditioning in the Underground Subway Station with Screen-Door Opening and Closing (도시철도 역사 스크린 도어 개폐에 따른 냉방 기류 해석 및 효율 비교 분석)

  • Jang, Yong-Jun;Ryu, Ji-Min;Jung, Ho-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.328-335
    • /
    • 2014
  • Numerical prediction methods were applied to investigate the turbulent air currents and air-conditioning efficiency in an underground subway station, and the results compared to experimental data. The Shin-gumho Station($8^{th}$ floor underground and 43.6m in depth) in Seoul was selected for the analysis. The entire station was covered for simulation and the ventilation mode was ordinary. The ventilation diffusers were modeled as 95 square shapes of $0.6m{\times}0.6m$ in the lobby and as 222 square shapes in the platform. Cooling air of $47,316m^3/h$ was supplied and the returned air of $33,980m^3/h$ is exhausted in the lobby and the cooling air of $33,968m^3/h$ is supplied and the returned air of $76,190m^3/h$ was exhausted in the platform which is the same as the experimental data. The cases of the screen-door-closed and open were respectively investigated. A total of 7.5million grids were generated and the whole domain divided into 22 blocks for MPI efficiency of calculation. Large eddy simulation (LES) was applied to solve the momentum and energy equation.

A Study on the Ward Module according to the External Design of the Hospital (병원 외주부 디자인에 따른 병실모듈 연구)

  • Lee, Hyunjin;Park, Wonbae
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.27 no.3
    • /
    • pp.71-78
    • /
    • 2021
  • Purpose: It is important to plan the ward module at a time when the size of beds, the floor area, and the construction budget are all set prior to the hospital design. In this context this study aims (1) to derive various factors affecting the ward module, and (2) to analyze the appropriate room module according to the type. Methods: Design factors related to hospital modules are derived through precedential studies, and the types of ward elevation are classified by reviewing the drawings of 18 case hospitals. And the detailed dimensions and area of the derived elements are analyzed. Results: The X-axis modules of the ward are switched to long span structural columns of 9.9 m, 12.6 m and 13.2 m, but the ward modules still represent 6.6 m. The Y-axis module of the ward shows a dimension of 9 to 9.9m in the process of changing a multi-person room into a four-person room. Type A of curtain wall with columns located on the wall of the room and type B of curtain wall located in the center of the room are analyzed due to their variations. The square window type, which forms the elevation of the square window by exposing the columns to the elevation, and the outframe type, which protrudes from the structural columns and beams, have elevation designs limited. There are, however, no obstacles to the interior space of the hospital room, so the wall composition and furniture arrangement are expected to be free. The ward area of Curtain Wall Type A, which can secure an effective area of 5.9m*5.0m, are 52.1m2. The Curtain Wall Type A, Square window type, and the outframe type are 49.8m2. Implications: As part of the hospital standard module plan for economical and reasonable hospital building planning, a type was proposed in this study in conjunction with the external design. It is hoped that it be a base for standard module research linked together to the Central Treatment department, Outpatient department and underground parking lot.

Geotechnical Engineering Characteristics of Ulleung Basin Sediment, East Sea (동해, 울릉 분지 심해토의 지반공학특성)

  • Lee, Chang-Ho;Yun, Tae-Sup;J.C., Santamarina;Bahk, Jang-Jun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.17-29
    • /
    • 2009
  • There has been an increase in the investigation of deep sea sediments with a consequent increase in the amount of energy required to undertake these investigations. The geotechnical characteristics of Ulleung Basin sediment are explored by using depressurized specimens following methane production tests carried out on pressured core samples obtained at 2,100 m water depth and 110 m below sea floor. Geotechnical index tests, X-ray diffraction, and scanning electron microscope are conducted to identify the geotechnical index parameters, clay mineralogy, chemical composition, and microstructure of the sediments. Compressibility, and elastic and electromagnetic wave parameters are investigated for two samples by using a multi sensing instrumented oedometer cell. The strength chatracteristics are obtained by the direct shear tests. The dominant clay minerals are mostly kaolinite, illite, chlorite, and calcite. The SEM shows a well-developed flocculated structure of the microfossil. Void ratio, electrical resistivity, real permittivity, conductivity, and shear wave velocity show bi-linear behavior with the effective vertical stress: as the vertical effective stress increases. The friction angle obtained by the direct shear test is about $21^{\circ}$, which is similar to the value observed in the Ulleung Basin sediments. This study shows that the understanding of the behavior acting on the diatomaceous marine sediment is important because it often maintains the useful energy resources such as gas hydrate and so will be the new engineering field in the next generation.

Plio-Quaternary Seismic Stratigraphy and Depositional History on the Southern Ulleung Basin, East Sea (동해 울릉분지 남부의 플라이오-제4기 탄성파 층서 및 퇴적역사)

  • Joh, Min-Hui;Yoo, Dong-Geun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.90-101
    • /
    • 2009
  • Analysis of multi-channel seismic reflection data from the Southern Ulleung Basin reveals that Plio-Quaternary section in the area consists of nine stacked sedimentary units separated by erosional unconformities. On the southern slope, these sedimentary units are acoustically characterized by chaotic seismic facies without distinct internal reflections, interpreted as debris-flow bodies. Toward the basin floor, the sedimentary units are defined by well-stratified facies with good continuity and strong amplitude, interpreted as turbidite/hemipelagic sediments. The seismic facies distribution suggests that deposition of Plio-Quaternary section in the area was controlled mainly by tectonic movement and sea-level fluctuations. During the Pliocene, sedimentation was mainly controlled by tectonic movements related to the back-arc closure of the East Sea. The back-arc closure that began in the Miocene caused compressional deformation along the southern margin of the Ulleung Basin, resulting in regional uplift which continued until the Pliocene. Large amounts of sediments, eroded from the uplifted crustal blocks, were supplied to the basin, depositing Unit 1 which consists of debris-flow deposits. During the Quaternary, sea-level fluctuations resulted in stacked sedimentary units (2-9) consisting of debris-flow deposits, formed during sea-level fall and lowstands, and thin hemipelagic/turbidite sediments, deposited during sea-level rise and highstands.

Effect of cavity shape, bond quality and volume on dentin bond strength (와동의 형태, 접착층의 성숙도, 및 와동의 부피가 상아질 접착력에 미치는 영향)

  • Lee, Hyo-Jin;Kim, Jong-Soon;Lee, Shin-Jae;Lim, Bum-Soon;Baek, Seung-Ho;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.450-460
    • /
    • 2005
  • The aim of this study was to evaluate the effect of cavity shape, bond quality of bonding agent and volume of resin composite on shrinkage stress developed at the cavity floor. This was done by measuring the shear bond strength with respect to iris materials (cavity shape , adhesive-coated dentin as a high C-factor and Teflon-coated metal as a low C-factor), bonding agents (bond quality: $Scotchbond^{TM}$ Multi-purpose and Xeno III) and iris hole diameters (volume; 1mm or 3mm in $diameter{\times}1.5mm$ in thickness). Ninety-six molars were randomly divided into 8 groups ($2{\times}2{\times}2$ experimental setup). In order to simulate a Class I cavity, shear bond strength was measured on the flat occlusal dentin surface with irises. The iris hole was filled with Z250 restorative resin composite in a bulk-filling manner. The data was analyzed using three-way ANOVA and the Tukey test. Fracture mode analysis was also done When the cavity had high C-factor, good bond quality and large volume, the bond strength decreased significantly The volume of resin composite restricted within the well-bonded cavity walls is also be suggested to be included in the concept of C-factor, as well as the cavity shape and bond quality. Since the bond quality and volume can exaggerate the effect of cavity shape on the shrinkage stress developed at the resin-dentin bond, resin composites must be filled in a method, which minimizes the volume that can increase the C-factor.