• Title/Summary/Keyword: Multi-directional Wave

Search Result 60, Processing Time 0.035 seconds

FPGA-based design and implementation of data acquisition and real-time processing for laser ultrasound propagation

  • Abbas, Syed Haider;Lee, Jung-Ryul;Kim, Zaeill
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.467-475
    • /
    • 2016
  • Ultrasonic propagation imaging (UPI) has shown great potential for detection of impairments in complex structures and can be used in wide range of non-destructive evaluation and structural health monitoring applications. The software implementation of such algorithms showed a tendency in time-consumption with increment in scan area because the processor shares its resources with a number of programs running at the same time. This issue was addressed by using field programmable gate arrays (FPGA) that is a dedicated processing solution and used for high speed signal processing algorithms. For this purpose, we need an independent and flexible block of logic which can be used with continuously evolvable hardware based on FPGA. In this paper, we developed an FPGA-based ultrasonic propagation imaging system, where FPGA functions for both data acquisition system and real-time ultrasonic signal processing. The developed UPI system using FPGA board provides better cost-effectiveness and resolution than digitizers, and much faster signal processing time than CPU which was tested using basic ultrasonic propagation algorithms such as ultrasonic wave propagation imaging and multi-directional adjacent wave subtraction. Finally, a comparison of results for processing time between a CPU-based UPI system and the novel FPGA-based system were presented to justify the objective of this research.

Sloshing characteristics of an annular cylindrical tuned liquid damper for spar-type floating offshore wind turbine

  • Jeon, S.H.;Seo, M.W.;Cho, Y.U.;Park, W.G.;Jeong, W.B.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.331-343
    • /
    • 2013
  • The natural sloshing frequencies of annular cylindrical TLD are parametrically investigated by experiment, aiming at the exploration of its successful use for suppressing the structural vibration of spar-type floating wind turbine subject to multidirectional wind, wave and current excitations. Five prototypes of annular cylindrical TLD are defined according to the inner and outer radii of acryl container, and eight different liquid fill heights are experimented for each TLD prototype. The apparent masses near the first and second natural sloshing frequencies are parametrically investigated by measuring the apparent mass of interior liquid sloshing to the acceleration excitation. It is observed from the parametric experiments that the first natural sloshing frequency shows the remarkable change with respect to the liquid fill height for each TLD model with different container dimensions. On the other hand, the second natural sloshing frequency is not sensitive to the liquid fill height but to the gap size, for all the TLD models, convincing that the annular cylindrical sloshing damper can effectively suppress the wave- and wind-induced tilting motion of the spar-type floating wind turbine.

Multi-directional Irregular Wave Over an Axis-symmetric Seabed (축대칭 지형을 지나는 다방향 불규칙파 모의)

  • Kim, Hyung-Joon;Yoon, Jae-Seon;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.109.1-109.1
    • /
    • 2010
  • 파랑의 거동을 해석하기 위해 몇 십 년 동안 많은 연구들이 진행되었다. 그 중에서 해석적인 방법으로 축대칭 지형과 같은 간단한 지형을 지나는 파랑의 변형을 예측하는 것은 실험에 의한 방법에 비해 시간적, 비용적인 측면에서 유리하다. 또한 수치기법에 의한 오차를 발생하지 않기 때문에 보다 정확한 해를 구할 수 있다는 장점이 있다. 그러나 단일주기, 단일방향에 대한 가정을 거치기 때문에 실제 해역에서의 복잡한 파랑 변형을 예측하는데 한계가 있다. 고유함수전개법을 축 대칭 지형에 적용시키는 연구는 Bender and Dean(2005)에 의해 제시되었으며, 본 연구에서는 이것을 발전시켜 다방향 불규칙파에 대한 파랑 변형을 모의하였다. 그리고 결과를 단일주기에 의한 규칙파와 비교하여 그 특성을 알아보았다.

  • PDF

Multi-Objective Onboard Measurement from the Viewpoint of Safety and Efficiency (안전성 및 효율성 관점에서의 다목적 실선 실험)

  • Sang-Won Lee;Kenji Sasa;Ik-Soon Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.116-118
    • /
    • 2023
  • In recent years, the need for economical and sustainable ship routing has emerged due to the enforced regulations on environmental issues. Despite the development of weather forecasting technology, maritime accidents by rough waves have continued to occur due to incorrect weather forecasts. In this study, onboard measurements are conducted to observe the acutal situation on merchant ships in operation encountering rough waves. The types of measured data include information related to navigation (Ship's position, speed, bearing, rudder angle) and engine (engine revolutions, power, shaft thrust, fuel consumption), weather conditions (wind, waves), and ship motions (roll, pitch, and yaw). These ship experiments was conducted to 28,000 DWT bulk carrier, 63,000 DWT bulk carrier, 20,000 TEU container ship, and 12,000 TEU container ship. The actual ship experiment of each ship is intended to acquire various types of data and utilize them for multi-objective studies related to ship operation. Additionally, in order to confirm the sea conditions, the directional wave spectrum was reproduced using a wave simulation model. Through data collection from ship experiments and wave simulations, various studies could be proceeding such as the measurement for accurate wave information by marine radar and analysis for cargo collapse accidents. In addition, it is expected to be utilized in various themes from the perspective of safety and efficiency in ship operation.

  • PDF

The proposal of the energy efficiency sensor network using directional antennas (방향성 안테나를 이용한 에너지 효율적인 센서 네트워크의 제안)

  • Kim, Kyung-Kuen;Jung, Won-Soo;Oh, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.351-352
    • /
    • 2007
  • The sensor networking technique as the radio network which does not have the base infrastructure network. The sensor nodes oneself automatic compose the network and simultaneously accomplish two roles of the router and data source. The sensor network is kind of Ad-hoc network is a possibility of seeing from point. sensor networking technique is restricted that limit of the memory and the battery back with the resources of the node. The sensor nodes overcomes the restriction of the resources it is in the process of researching the multi-hop routing technique which the sensor network divided cluster routing techniques which are researched. this paper proposed using beamforming antenna which has the directivity of the electric wave. the beamforming antenna from the Ad-hoc network using technique. the proposal is that raises the efficient of data trans mission from the sensor network and extends the lift time of the sensor network.

  • PDF

Effects of Flow Direction and Consolidation Pressure on Hydraulic Resistance Capacity of Soils (흐름방향과 압밀응력이 지반의 수리저항특성에 미치는 영향)

  • Kim, Youngsang;Jeong, Shinhyun;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.55-66
    • /
    • 2015
  • Big tidal differences, which range from 3.0 m to 8.0 m, exist with regional locations at south and west shores of Korea. Under this ocean circumstance, since a large scour may occur due to multi-directional tidal current and transverse stress of the wind, the scour surrounding the wind turbine structure can make instability of the system due to unexpected system vibration. The hydraulic resistance capacity of soils consolidated under different pressures are evaluated by Erosion Function Apparatus (EFA) under unidirectional and bi-directional flows in this study. It was found that the flow direction change affects significantly on the sour rate and critical shear stress, regardless of soil types while the consolidation pressure affects mainly cohesive soil. Among geotechnical parameters, the undrained shear strength can be well-correlated with the hydraulic resistance capacity, regardless soil type while the shear wave velocity shows the proportional relationships with the hydraulic resistance capacities of fine grained soil and coarse grained soil, respectively.

An internal multi-band antenna for mobile handset using two slots (두 개의 슬롯을 이용한 단말기용 다중대역 내장형 안테나)

  • Ahn, Sang-Kwon;Choi, Sunho;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.61-66
    • /
    • 2014
  • This paper describes the design, fabrication, and measurement of a compact hexa-band coupling antenna for 4G mobile handset using a small element with two slots. In order to obtain sufficient bandwidth (LTE700, GSM850, GSM900, GSM1800, GSM1900, UMTS) with a Voltage Standing Wave Ratio $(VSWR){\leq}3:1$, two slots are inserted in the small element, and coupling patch is used. The measured result of the fabricated antenna provides 410MHz bandwidth form 0.688 to 1.098GHz and 643 MHz bandwidth form 1.607 to 2.250GHz (${\leq}VSWR 3:1$) with the gain ranging from -0.52 to 4.68 dBi. Also, a good radiation pattern is achieved within the hexa-band (0.698-0.960GHz and 1.710-2.170GHz) range.

Folded Ultra Wideband Monopole Antenna for SDR Application (Software Defined Radio (SDR) 무전기용 접힌 평면 구조의 초광대역 안테나)

  • Oh, Jun-Hwa;Oh, Il-Young;Yook, Jong-Gwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.52-58
    • /
    • 2009
  • We propose a folded monopole antenna with loads, and analyze the roles of design parameters which affect the return loss of the proposed antenna. VSWR < 3 bandwidth of the antenna is 30 ~ 2000 MHz, ranging from the HF/VHF/UHF bands. For operating travelling antenna, we connect six loads at the end of the antenna. The reflected wave is drastically reduced due to the six loads. For improved return loss properties, we use Klopfenstein tape that determine positions and values of six loads. The propose antenna has omni-directional radiational patterns like that of conventional monopole antennas. For wideband impedance transformation, we use the balun which operating frequency region is 10 ~ 1900 MHz. We expect the proposed antenna has important role for the wideband and multi-rold multi-functional communication systems.

Characteristics of the Differences between Significant Wave Height at Ieodo Ocean Research Station and Satellite Altimeter-measured Data over a Decade (2004~2016) (이어도 해양과학기지 관측 파고와 인공위성 관측 유의파고 차이의 특성 연구 (2004~2016))

  • WOO, HYE-JIN;PARK, KYUNG-AE;BYUN, DO-SEONG;LEE, JOOYOUNG;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • In order to compare significant wave height (SWH) data from multi-satellites (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and SWH measurements from Ieodo Ocean Research Station (IORS), we constructed a 12 year matchup database between satellite and IORS measurements from December 2004 to May 2016. The satellite SWH showed a root mean square error (RMSE) of about 0.34 m and a positive bias of 0.17 m with respect to the IORS wave height. The satellite data and IORS wave height data did not show any specific seasonal variations or interannual variability, which confirmed the consistency of satellite data. The effect of the wind field on the difference of the SWH data between satellite and IORS was investigated. As a result, a similar result was observed in which a positive biases of about 0.17 m occurred on all satellites. In order to understand the effects of topography and the influence of the construction structures of IORS on the SWH differences, we investigated the directional dependency of differences of wave height, however, no statistically significant characteristics of the differences were revealed. As a result of analyzing the characteristics of the error as a function of the distance between the satellite and the IORS, the biases are almost constant about 0.14 m regardless of the distance. By contrast, the amplitude of the SWH differences, the maximum value minus the minimum value at a given distance range, was found to increase linearly as the distance was increased. On the other hand, as a result of the accuracy evaluation of the satellite SWH from the Donghae marine meteorological buoy of Korea Meteorological Administration, the satellite SWH presented a relatively small RMSE of about 0.27 m and no specific characteristics of bias such as the validation results at IORS. In this paper, we propose a conversion formula to correct the significant wave data of IORS with the satellite SWH data. In addition, this study emphasizes that the reliability of data should be prioritized to be extensively utilized and presents specific methods and strategies in order to upgrade the IORS as an international world-wide marine observation site.

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF