• Title/Summary/Keyword: Multi-dimensional flow

Search Result 344, Processing Time 0.027 seconds

A Study on the Selection of Forward Flow Forming Conditions with Inconel718 Tube for Mortar Barrel Manufacturing (박격포 포신 제작을 위한 Inconel718 소재의 전진 유동성형 조건 선정에 관한 연구)

  • Ko, Se-Kwon;Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.51-59
    • /
    • 2019
  • Flow forming is an eco-friendly and high-efficiency plastic deformation process with fewer chips during a process which is specifically used to manufacture seamless tubular products like tire wheels, rocket motor cases etc. On the development of mortar barrel using Inconel718 tube, some flow formed products had dimensional errors on their thickness. In this study, our purpose is to optimize the process conditions with the smallest dimensional error. In order to find an optimum process condition, 2D axisymmetric FEM simulation analyses with Taguchi method were conducted. Geometric variables (attack angle, flatting angle, roller nose radius) and operating parameters (depth of forming, feed rate) are considered as control factors. Forward flow forming with single roller was first analyzed to determine the effective factors using AFDEX software and attack angle of the roller was identified as the most influential factor. Also, the nose radius of the rollers was confirmed as a significant factor in multi-rollers flow forming system. The effect of rollers offset values are also studied and finally, we proposed optimal conditions to improve the accuracy of flow forming process with Inconel718 tube for mortar barrel manufacturing.

Investigation of the Filling Unbalance and Dimensional Variations in Multi-Cavity Injection Molded Parts (다수 캐비티의 사출성형품에서 충전의 불균형과 성형품 치수 편차의 교찰)

  • Kang, Min-A;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.501-508
    • /
    • 2008
  • Small injection molded articles such as lens and mobile product parts are usually molded in multi-cavity mold. The problem occurring in multi-cavity molding is flow unbalance among the cavities. The flow unbalance affects the dimensions and physical properties of molded articles. First of all, the origin of flow unbalance is geometrical unbalance of the delivery system. However, even the geometry of the delivery system is well balanced, cavity unbalance occurs. This comes from the temperature distributions in the cross-section of runner. Temperature distribution depends upon injection speed because heat generation near runner wall is high at high injection speed. Among the operational conditions, injection speed is the most significant process variable affecting the filling unbalances in multi-cavity injection molding. In this study, experimental study of flow unbalance has been conducted for various injection speeds and materials. Also, the filling unbalances were compared with CAE results. The dimensions and weights of multi-cavity molded parts were examined. The results showed that the filling unbalances vary according to the injection speeds and resins. Subsequently, the unbalanced filling and pressure distribution in the multi-cavity affect the dimensions and physical states of molded parts.

Multi-Dimension Scaling as an exploratory tool in the analysis of an immersed membrane bioreactor

  • Bick, A.;Yang, F.;Shandalov, S.;Raveh, A.;Oron, G.
    • Membrane and Water Treatment
    • /
    • v.2 no.2
    • /
    • pp.105-119
    • /
    • 2011
  • This study presents the tests of an Immersed Membrane BioReactor (IMBR) equipped with a draft tube and focuses on the influence of hydrodynamic conditions on membrane fouling in a pilot-scale using a hollow fiber membrane module of ZW-10 under ambient conditions. In this system, the cross-flow velocities across the membrane surface were induced by a cylindrical draft-tube. The relationship between cross-flow velocity and aeration strength and the influence of the cross-flow on fouling rate (under various hydrodynamic conditions) were investigated using Multi-Dimension Scaling (MDS) analysis. MDS technique is especially suitable for samples with many variables and has relatively few observations, as the data about Membrane Bio-Reactor (MBR) often is. Observations and variables are analyzed simultaneously. According to the results, a specialized form of MDS, CoPlot enables presentation of the results in a two dimensional space and when plotting variables ratio (output/input) rather than original data the efficient units can be visualized clearly. The results indicate that: (i) aeration plays an important role in IMBR performance; (ii) implementing the MDS approach with reference to the variables ratio is consequently useful to characterize performance changes for data classification.

Comparison of multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations (비정상 Navier-Stokes 방정식의 수치해석을 위한 다단계 외재법의 성능 비교)

  • Seo,Yong-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.202-212
    • /
    • 1997
  • In this study, performance of the multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations is investigated. Three methods under consideration are 1 st-, 2 nd-, and 4 th-order Runge-Kutta (R-K) methods. Compared in this estimation is stability, accuracy, and CPU time of each method. The computational codes developed are applied to the two-dimensional flow in a square cavity driven by an oscillating lid. It turned out that at Reynolds number 400, the 1 st-order R-K method is the best, while at 3200 the 2 nd-order R-K is recommended. At higher Reynolds numbers, it is conjectured that the 4 th-order R-K method will be the best algorithm among three due to its highest stability.

IMPROVEMENT OF FLOW SIMULATIONS METHOD WITH MULTI-RESOLUTION ANALYSIS BY BOUNDARY TREATMENT (경계면 처리 개선을 통한 다중해상도 유동해석 기법 개선 연구)

  • Kang, H.M.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.44-50
    • /
    • 2015
  • The computational efficiency of flow simulations with Multi-resolution analysis (MRA) was enhanced via the boundary treatment of the computational domain. In MRA, an adaptive dataset to a solution is constructed through data decomposition with interpolating polynomial and thresholding. During the decomposition process, the basis points of interpolation should exceed the boundary of the computational domain. In order to resolve this problem, the weight coefficients of interpolating polynomial were adjusted near the boundaries. By this boundary treatment, the computational efficiency of MRA was enhanced while the numerical accuracy of a solution was unchanged. This modified MRA was applied to two-dimensional steady Euler equations and the enhancement of computational efficiency and the maintenance of numerical accuracy were assessed.

Development of multi-cell flows in the three-layered configuration of oxide layer and their influence on the reactor vessel heating

  • Bae, Ji-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.996-1007
    • /
    • 2019
  • We investigated the influence of the aspect ratio (H/R) of the oxide layer on the reactor vessel heating in three-layer configuration. Based on the analogy between heat and mass transfers, we performed mass transfer experiments to achieve high Rayleigh numbers ranging from $6.70{\times}10^{10}$ to $7.84{\times}10^{12}$. Two-dimensional (2-D) semi-circular apparatuses having the internal heat source were used whose surfaces of top, bottom and side simulate the interfaces of the oxide layer with the light metal layer, the heavy metal layer, and the reactor vessel, respectively. Multi-cell flow pattern was identified when the H/R was reduced to 0.47 or less, which promoted the downward heat transfer from the oxide layer and possibly mitigated the focusing effect at the upper metallic layer. The top boundary condition greatly affected the natural convection of the oxide layer due to the presence of secondary flows underneath the cold light metal layer.

Viscous Flow Analysis of a Submarine with Variation of Angle of Attack and Yaw Angle (유동 방향 변화에 따른 잠수함 주위의 3차원 점성유동 해석과 공기역학적 계수의 변화)

  • Jang Jin-Ho;Park Warn-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.189-192
    • /
    • 2002
  • In this paper, the submarine model, called DARPA SUBOFF model, has been numerically analyzed to investigate the aerodynamic forces variation in terms of angle of attacks and yaw angles. The SUBOFF model is consisted of the three parts : axisymmetric body, fairwater, and four symmetric stern appendages. Three dimensional unsteady incompressible Wavier-Stokes equation was used on curvilinear multi-block grid system. To validate the present code, the SUBOFF tare hull and an ellipsoid at angle of attacks of $10^{\circ}\;and\;30^{\circ}$ were simulated and a good agreement with experiments was obtained. After the code validation, the flows over SUBOFF model were simulated at three different angle of attacks and yaw angles. The variation of aerodynamic forces in terms of angle of attack and yaw angle were calculated. Also, to understand the flow features around a submarine with variation of yaw and attack angle, the pressure contours and streamlines were plotted.

  • PDF

NUMERICAL SIMULATION ON A VOLUTE OF STRAIGHT CONICAL DUCT TYPE BY MULTI-BLOCK GRID (다중 블록 격자를 이용한 원뿔 직관 모양의 벌류트 유동의 수치해석)

  • Bae, H.;Kang, H.G.;Yoon, J.S.;Park, K.C.;Chang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.1-7
    • /
    • 2006
  • Numerical investigation of a centrifugal compressor volute having a modified straight conical duct hill been made. Three-dimensional Reynolds-Averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence equation are solved To avoid coordinate singularity at the central axis of the duct, multi-block H-type grid is generated on the circular cross-sections of the volute and stretched toward the solid wall boundary. We obtained numerical results with three different mass flow rates at the volute inlet, namely, with the inlet conditions that give small, medium and large mass flow rates at the outlet of the conical duct. Agreement with the experimental results is observed.

Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate (설계유량을 변수로 한 원심다익송풍기의 최적설계)

  • Seo, Seung-Jin;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1726-1731
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

  • PDF

Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate (설계유량을 변수로 한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1332-1338
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with k-$\varepsilon$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.