• 제목/요약/키워드: Multi-dimensional Model

검색결과 808건 처리시간 0.026초

인간 친화 로봇의 다양한 복합 감정 표현을 위한 다차원 복합 감정 모델 설계 (Multi-Dimensional Complex Emotional Model for Various Complex Emotional Expression using Human Friendly Robot System)

  • 안호석;최진영
    • 로봇학회논문지
    • /
    • 제4권3호
    • /
    • pp.210-217
    • /
    • 2009
  • This paper introduces a design of multi-dimensional complex emotional model for various complex emotional expression. It is a novel approach to design an emotional model by comparison with conventional emotional model which used a three-dimensional emotional space with some problems; the discontinuity of emotions, the simple emotional expression, and the necessity of re-designing the emotional model for each robot. To solve these problems, we have designed an emotional model. It uses a multi-dimensional emotional space for the continuity of emotion. A linear model design is used for reusability of the emotional model. It has the personality for various emotional results although it gets same inputs. To demonstrate the effectiveness of our model, we have tested with a human friendly robot.

  • PDF

관계형 다차원모델에 기반한 온라인 고객리뷰 분석시스템의 설계 및 구현 (Study on Designing and Implementing Online Customer Analysis System based on Relational and Multi-dimensional Model)

  • 김근형;송왕철
    • 한국콘텐츠학회논문지
    • /
    • 제12권4호
    • /
    • pp.76-85
    • /
    • 2012
  • 오피니언마이닝 기법은 대량의 고개리뷰들에 나타나는 핵심개체 또는 속성들에 대하여 고객들이 느끼는 긍정 또는 부정의 정도를 계산할 수 있지만, 그 분석능력이 단순하다는 한계가 있다. 본 논문에서는 온라인 고객리뷰들에 대하여 다차원적으로 분석할 수 있는 기법을 제안하였다. 기존의 OLAP기법을 텍스트 데이터형에 적용할 수 있도록 수정하였다. 다차원 분석모델은 명사축과 형용사축, 문서축으로 구성되는 3차원 공간 개념을 4개의 관계형 테이블로 실체화 한 것이다. 다차원 분석모델은 기존의 오피니언마이닝, 정보요약, 클러스터링 알고리즘들을 융합할 수 있는 새로운 틀이라는 점에서 그 가치가 있다. 본 논문에서 제안한 다차원 분석모델과 알고리즘들을 실제로 구현하여 온라인 고객리뷰에 대한 복잡한 분석을 수행할 수 있음을 확인하였다.

Evolutionary computational approaches for data-driven modeling of multi-dimensional memory-dependent systems

  • Bolourchi, Ali;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.897-911
    • /
    • 2015
  • This study presents a novel approach based on advancements in Evolutionary Computation for data-driven modeling of complex multi-dimensional memory-dependent systems. The investigated example is a benchmark coupled three-dimensional system that incorporates 6 Bouc-Wen elements, and is subjected to external excitations at three points. The proposed technique of this research adapts Genetic Programming for discovering the optimum structure of the differential equation of an auxiliary variable associated with every specific degree-of-freedom of this system that integrates the imposed effect of vibrations at all other degrees-of-freedom. After the termination of the first phase of the optimization process, a system of differential equations is formed that represent the multi-dimensional hysteretic system. Then, the parameters of this system of differential equations are optimized in the second phase using Genetic Algorithms to yield accurate response estimates globally, because the separately obtained differential equations are coupled essentially, and their true performance can be assessed only when the entire system of coupled differential equations is solved. The resultant model after the second phase of optimization is a low-order low-complexity surrogate computational model that represents the investigated three-dimensional memory-dependent system. Hence, this research presents a promising data-driven modeling technique for obtaining optimized representative models for multi-dimensional hysteretic systems that yield reasonably accurate results, and can be generalized to many problems, in various fields, ranging from engineering to economics as well as biology.

Reduced Quasi-Dimensional Combustion Model of the Direct Injection Diesel Engine for Performance and Emissions Predictions

  • Jung, Dohoy;Assanis, Dennis N.
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.865-876
    • /
    • 2004
  • A new concept of reduced quasi-dimensional combustion model for a direct injection diesel engine is developed based on the previously developed quasi-dimensional multi-zone model to improve the computational efficiency. In the reduced model, spray penetration and air entrainment are calculated for a number of zones within the spray while three zones with aggregated spray zone concept are used for the calculation of spray combustion and emission formation processes. It is also assumed that liquid phase fuel appears only near the nozzle exit during the breakup period and that spray vaporization is immediate in order to reduce the computational time. Validation of the reduced model with experimental data demonstrated that the new model can predict engine performance and NO and soot emissions reasonably well compared to the original model. With the new concept of reduced model, computational efficiency is significantly improved as much as 200 times compared to the original model.

Prediction of Maximum Liquid-phase Penetration in Diesel Spray: A review

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제13권3호
    • /
    • pp.117-125
    • /
    • 2008
  • The correlations for the prediction of maximum liquid-phase penetration in diesel spray are reviewed in this study. The existing models developed for the prediction of maximum liquid-phase penetration can be categorized as the zero-dimensional (empirical) model, the multi-dimensional model and the other model. The existing zero-dimensional model can be classified into four groups and the existing multidimensional models can be classified into three groups. The other model includes holistic hydraulic and spray model. The maximum liquid-phase penetration is mainly affected by nozzle diameter, fuel volatility, injection pressure, ambient gas pressure, ambient gas density and fuel temperature. In the case of empirical correlations incorporated with spray angle, the predicted results will be different according to the selection of correlation for spray angle. The research for the effect of boiling point temperatures on maximum liquid-phase penetration is required. In the case of multidimensional model, there exist problems of the grid and spray sub-models dependency effects.

  • PDF

Analysis of LBLOCA of APR1400 with 3D RPV model using TRACE

  • Yunseok Lee;Youngjae Lee;Ae Ju Chung;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1651-1664
    • /
    • 2023
  • It is very difficult to capture the multi-dimensional phenomena such as asymmetric flow and temperature distributions with the one-dimensional (1D) model, obviously, due to its inherent limitation. In order to overcome such a limitation of the 1D representation, many state-of-the-art system codes have equipped a three-dimensional (3D) component for multi-dimensional analysis capability. In this study, a standard multi-dimensional analysis model of APR1400 (Advanced Power Reactor 1400) has been developed using TRACE (TRAC/RELAP Advanced Computational Engine). The entire reactor pressure vessel (RPV) of APR1400 has been modeled using a single 3D component. The fuels in the reactor core have been described with detailed and coarse representations, respectively, to figure out the impact of the fuel description. Using both 3D RPV models, a comparative analysis has been performed postulating a double-ended guillotine break at a cold leg. Based on the results of comparative analysis, it is revealed that both models show no significant difference in general plant behavior and the model with coarse fuel model could be used for faster transient analysis without reactor kinetics coupling. The analysis indicates that the asymmetric temperature and flow distributions are captured during the transient, and such nonuniform distributions contribute to asymmetric quenching behaviors during blowdown and reflood phases. Such asymmetries are directly connected to the figure of merits in the LBLOCA analysis. Therefore, it is recommended to employ a multi-dimensional RPV model with a detailed fuel description for a realistic safety analysis with the consideration of the spatial configuration of the reactor core.

Coherent Two-Dimensional Optical Spectroscopy

  • Cho, Min-Haeng
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권12호
    • /
    • pp.1940-1960
    • /
    • 2006
  • Theoretical descriptions of two-dimensional (2D) vibrational and electronic spectroscopy are presented. By using a coupled multi-chromophore model, some examples of 2D spectroscopic studies of peptide solution structure determination and excitation transfer process in electronically coupled multi-chromophore system are discussed. A few remarks on perspectives of this research area are given.

발전소 계통해석을 위한 MARS 코드의 다차원 이상 난류 유동 모델 검증계산 (Assessment of MARS Multi-dimensional Two-phase Turbulent Flow Models for the Nuclear System Analysis)

  • 이석민;이은철;배성원;정법동
    • 에너지공학
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2006
  • 원자력발전소의 다차원 이상 유동 현상을 적절히 모사하기 위해 일차원 계통해석 코드에 삼차원 유동모델을 적용하였다. 그 중 다차원모델에 새롭게 적용된 이상 난류모델을 검증하기 위해 사각 slab 내부의 단상유동을 계산하여 상용 CFD 코드의 계산결과와 비교하였다. 그 결과 단상유동의 경우 난류 모델의 계산이 적절히 수행됨을 알 수 있었다. 또한 다차원 이상 유동 계산을 검증하기 위해서 RPI에서 수행된 물-공기 다차원 실험의 기포율 분포를 비교하였다. 그 결과 다차원 모델의 이상 유동 계산을 위해서는 일차원 기반의 유동양상 맵 중 수평 분리 유동양상이 제거되어야 함을 알 수 있었다. 이와 같이 유동양상 맵을 수정하여 모사한 계산결과가 실험에서 측정된 기포율의 경향을 잘 따르는 것으로 계산되었다.

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.

1 Giga급 집적회로 구현을 위한 3차원 산화 공정 시뮬레이터 개발 및 산화층 성장 특성 분석에 관한 연구 (Development of three-dimensional thermal oxidation process simulator and analysis the characteristics of multi-dimensional oxide growth)

  • 이준하;황호정
    • 전자공학회논문지A
    • /
    • 제32A권8호
    • /
    • pp.107-118
    • /
    • 1995
  • Three-dimensional simulator for thermal oxidation process is developed. The simulator is consisted by two individual module, one is analytic-model module and the other is numerical-model module. The analytic-model which uses simple complementary-error function guarantees fast calculation in prediction of multi-dimensional oxidation process. The numerical-model which is based on boundary element method (BEM), has a good accuracy and suitable for various process conditions. The results of this study show that oxide growth is retarded at the corner of hole structure and enhanced at the corner of island structure. These effects are reson of different distribution of oxidant diffusion and mask stress. The utility of models and simulator developed in this study is demonstrated by using it to predict not only traditional shape of LOCOS but also process effects in small geometry.

  • PDF