• 제목/요약/키워드: Multi-degrees of freedom model

검색결과 43건 처리시간 0.026초

시스템의 성능 향상을 위해 마할라노비스 거리와 자유도를 이용하여 변형시킨 쿠커-스메일 모델 (Transformed Augmented Cucker-Smale Model with Mahalanobis Distance and Statistical Degrees of Freedom for Improving Efficiency of Flocking Flight System)

  • 정재휘
    • 한국항공우주학회지
    • /
    • 제48권8호
    • /
    • pp.573-580
    • /
    • 2020
  • 다중개체를 제어하기 위해서 해결해야 되는 문제들 중 하나는 위치제어다. 위치와 속도를 제어하기 위한 모델로 augmented Cucker-Smale 모델이 존재했다. 하지만 기존 모델은 모든 개체에 동일한 시스템을 적용함에 따라서 개별개체의 특성을 살리지 못했다는 특징이 있다. 본 논문에서는 그 점을 보안하고 적절한 형태로 변형하기 위해서 초기 위치와 분포를 이용한 마할라노비스 거리를 계수와 통계학적 자유도를 적용해서, 모델의 수렴시간과 소모에너지를 동시에 줄이고자 한다. 모델의 성능 검증을 위해서 몬테카를로 시뮬레이션을 통해서 전체적인 경향성을 판단했고, 추가적으로 개별 개체의 움직임을 분석하여서 마할라노비스 거리 계수가 적절한 역할을 수행하고 있는지 확인했다.

Analysis of the Torque Characteristics of a Multi-Degrees of Freedom Surface Permanent-Magnet Motor

  • Kang, Dong-Woo;Go, Sung-Chul;Won, Sung-Hong;Lim, Seung-Bin;Lee, Ju
    • Journal of Magnetics
    • /
    • 제15권1호
    • /
    • pp.36-39
    • /
    • 2010
  • The multi-degrees of freedom surface permanent-magnet motor (Multi-D.O.F. SPM) has several degrees of freedom operations that are defined as the "roll", "yaw", and "pitch". Normally, the torque that is generated to rotate a rotor includes ripples. The analysis of the torque ripples is important for improving motor performance. In terms of the electric analysis, torque ripple occurs as a result of many factors, including the rotor and stator structures, the distribution of the air-gap flux density, and the waveform of the current in the coils. In particular, the torque ripple is an important factor in the stable operation of the Multi-D.O.F. SPM. Therefore, in this work, the torque ripple was analyzed using various types of magnetization for the permanent magnet. An improved model was proposed for the Multi-D.O.F. SPM based on this analysis.

다수의 각접촉 볼베어링으로 지지된 5자유도 회전계에서 볼베어링의 Waviness에 의해 발생하는 비선형진동 해석모델 (Nonlinear Vibration Model of Ball Bearing Waviness in a Rigid Rotor Supported by Multi-Row Ball Bearing Considering Five Degrees of Freedom)

  • 정성원;장건희
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.336-345
    • /
    • 2001
  • This research presents a nonlinear model to analyze the ball bearing nitration due to the waviness in a rigid rotor supported by multi-row ball bearings. The waviness of a ball and each races is modeled by the superposition of sinusoidal function, and the position vectors of inner and outer groove radius center are defined with respect to the mass center of the rotor in order to consider five degrees of freedom of a general rotor-bearing system. The waviness of a ball bearing is introduced to these position vectors to use the Hertzian contact theory in order to calculate the elastic deflection and nonlinear contact force resulting from the waviness while the rotor has translational and angular motion. They can be determined by solving the nonlinear equations of motion with five degrees of freedom by using the Runge-Kutta-Fehlberg algorithm. Numerical results of this research are validated with those of prior researchers. The proposed model can calculate the translational displacement as well as the angular displacement of the rotor supported by the multi-row ball bearings with waviness. It also characterizes the nitration frequencies resulting from the various kinds of waviness in rolling elements, the harmonic frequencies resulting from the nonlinear load-deflection characteristics of ball bearing. and the sideband frequencies resulting from the waviness interaction.

  • PDF

Evolutionary computational approaches for data-driven modeling of multi-dimensional memory-dependent systems

  • Bolourchi, Ali;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.897-911
    • /
    • 2015
  • This study presents a novel approach based on advancements in Evolutionary Computation for data-driven modeling of complex multi-dimensional memory-dependent systems. The investigated example is a benchmark coupled three-dimensional system that incorporates 6 Bouc-Wen elements, and is subjected to external excitations at three points. The proposed technique of this research adapts Genetic Programming for discovering the optimum structure of the differential equation of an auxiliary variable associated with every specific degree-of-freedom of this system that integrates the imposed effect of vibrations at all other degrees-of-freedom. After the termination of the first phase of the optimization process, a system of differential equations is formed that represent the multi-dimensional hysteretic system. Then, the parameters of this system of differential equations are optimized in the second phase using Genetic Algorithms to yield accurate response estimates globally, because the separately obtained differential equations are coupled essentially, and their true performance can be assessed only when the entire system of coupled differential equations is solved. The resultant model after the second phase of optimization is a low-order low-complexity surrogate computational model that represents the investigated three-dimensional memory-dependent system. Hence, this research presents a promising data-driven modeling technique for obtaining optimized representative models for multi-dimensional hysteretic systems that yield reasonably accurate results, and can be generalized to many problems, in various fields, ranging from engineering to economics as well as biology.

다중 탄성 빔 모델을 사용한 다중벽 탄소 나노튜브의 자유 진동에 미치는 수정된 반데르발스 상호작용에 대한 연구 (The Study of Modified van der Waals Interactions on Free Vibration of Multi-walled Carbon Nanotubes Using Multi-elastic Beam Model)

  • 윤주일;강상욱
    • 한국소음진동공학회논문집
    • /
    • 제20권4호
    • /
    • pp.390-396
    • /
    • 2010
  • Resonant frequencies and the associated vibrational modes of multiwall carbon nanotubes are studied in this paper. The analysis is based on a multiple-elastic beam model, considering intertube radial displacements and the related internal degrees of freedom. Especially, van der Waals interaction is modified considering both all interaction between each layers in multi-wall carbon nanotubes and curvature effect. The results show that modified van der Waals interaction could significantly affect the natural frequencies of multi-walled carbon nanotubes. In particular, non-coaxial intertube resonance will be excited at the higher resonant frequencies of multiwall carbon nanotubes.

3자유도 모터의 동역학적 해석 및 제어 (Dynamic Analysis and Control of the 3 Degrees of Freedom Motor)

  • 강규원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.341-345
    • /
    • 1996
  • Many mechanical and electrocal systems use the number of motors to make multi degree of freedom motion. One method to reduce the number of motors is suggested by using the 3 D.O.F. motor. The 3 D.O.F. motor has advantages such as downsize, weight reduction, and simplification of the existing 3 D.O.F. systems. In this study, a mathematical model for the 3 D.O.F. motor is suggested and the dynamic equation is derived to analyze the 3 D.O.F. motion. Generallinear control methods are very hard to get the good performance because of the nonlinear terms of each degree of each degree of freedom. To control the motion properly, the nonlinear terms are decoupled using a feedback control law. Nonlinear feedback control law which can arrage the poles arbitrarily is derived. The effects of the gains are examined through computer simulations.

  • PDF

Design of a Hybrid Serial-Parallel Robot for Multi-Tasking Machining Processes (ICCAS 2005)

  • Kyung, Jin-Ho;Han, Hyung-Suk;Ha, Young-Ho;Chung, Gwang-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.621-625
    • /
    • 2005
  • This paper presents a new hybrid serial-parallel robot(HSPR), which has six degrees of freedom driven by ball screw linear actuators and motored joints. This hybrid robot design presents a compromise between high rigidity of fully parallel manipulators and extended workspace of serial manipulators. The hybrid robot has a large, singularity-free workspace and high stiffness. Therefore, the presented kinematic structure of the hybrid robot is particularly suitable for multi-tasking machining processes such as milling, drilling, deburring and grinding. In addition to the machining processes, the hybrid robot can be used for welding, fixturing, material handling and so on. The study on design of the hybrid robot is performed. A kinematic analysis and mechanism description of the hybrid robot with six-controlled degree of freedom is presented. In the virtual design works by DADS, workspace and force analysis are discussed. A numerical model is treated to demonstrate our analysis and to determine the range of permissible extension of the struts. Also, we determine some important design parameters for the hybrid robot.

  • PDF

수중 운동체의 거동 및 표면 압력하중 예측에 관한 수치적 연구 (A Computational Study About Behavior of an Underwater Projectile and Prediction of Surficial Pressure Loading)

  • 조성민;권오준
    • 한국군사과학기술학회지
    • /
    • 제20권3호
    • /
    • pp.405-412
    • /
    • 2017
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the platform. Qualitative analysis was conducted for the time history of vapor volume fraction distributions. Uncorking pressure around the projectile and platform was analyzed to predict impact force acting on the surfaces. The results of 6DOF analysis presented similar tendency with the surficial pressure distributions.

Impact study for multi-girder bridge based on correlated road roughness

  • Liu, Chunhua;Wang, Ton-Lo;Huang, Dongzhou
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.259-272
    • /
    • 2001
  • The impact behavior of a multigirder concrete bridge under single and multiple moving vehicles is studied based on correlated road surface characteristics. The bridge structure is modeled as grillage beam system. A 3D nonlinear vehicle model with eleven degrees of freedom is utilized according to the HS20-44 truck design loading in the American Association of State Highway and Transportation Officials (AASHTO) specifications. A triangle correlation model is introduced to generate four classes of longitudinal road surface roughness as multi-correlated random processes along deck transverse direction. On the basis of a correlation length of approximately half the bridge width, the upper limits of impact factors obtained under confidence level of 95 percent and side-by-side three-truck loading provide probability-based evidence for the evaluation of AASHTO specifications. The analytical results indicate that a better transverse correlation among road surface roughness generally leads to slightly higher impact factors. Suggestions are made for the routine maintenance of this type of highway bridges.

Vibration and buckling of laminated beams by a multi-layer finite element model

  • Kahya, Volkan;Turan, Muhittin
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.415-426
    • /
    • 2018
  • This paper presents a multi-layer finite element for buckling and free vibration analyses of laminated beams based on a higher-order layer-wise theory. An N-layer beam element with (9N + 7) degrees-of-freedom is proposed for analyses. Delamination and slip between the layers are not allowed. Element matrices for the single- and multi-layer beam elements are derived by Lagrange's equations. Buckling loads and natural frequencies are calculated for different end conditions and lamina stacking. Comparisons are made to show the accuracy of proposed element.