• 제목/요약/키워드: Multi-crystalline silicon

검색결과 59건 처리시간 0.027초

다결정 태양 전지 효율 향상 위한 Laser 표면 texturing (Laser texturing on the surface for improvement of multi-crystalline solar cells)

  • 김태훈;김선용;고지수;박현호;김광열;조창현;신성욱;최병덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.364-364
    • /
    • 2009
  • The solar cell is in the spotlight as a future green energy source. In the solar cells based on silicon wafer, the improvement of efficiency is one of crucial issues. One of techniques for high efficiency is texturing on the surface of solar cells. We studied the laser texturing on the surface of multi-crystalline silicon solar cells. The laser texturing followed by chemical etching is adequate for the multi-crystalline structure which have random crystallographic directions. We used the fiber laser for texturing and the SiNx as a masking layer for etching process. We investigated the shapes of holes for texturing in the various laser power conditions and analyzed the holes after removal of thermal damages caused by laser ablation through a 3D profiler.

  • PDF

웨이퍼 접착 텍스쳐링 방식을 이용한 다결정 실리콘 태양전지 제조 (Fabrication of Multi-crystalline Silicon Solar Cell by using Wafer Adhesion Texturing Method)

  • 윤석일;노시철;최정호;정종대;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.67-72
    • /
    • 2016
  • In this study, the texturing and the emitter formation processes were carried out with the wafer adhesion method to increase the productivity and reduce the production cost of the multi-crystalline silicon solar cell. After fabricating $156{\times}156mm$ solar cell according to the wafer adhesion method, the operation characteristics were analyzed and compared with those of the solar cell fabricated by the standard process method. In the case of a solar cell formed by the wafer adhesion method, it showed Jsc of $32.87mA/cm^2$, Voc of 0.612V, FF of 78.04% and efficiency of 15.71% respectively. The efficiency of the solar cell formed by the wafer adhesion method was 0.1% higher than that of the solar cell formed by the standard method. In addition, the productivity of the texturing and the emitter formation processes is expected to be approximately doubled. Therefore, it is expected that the manufacturing cost of the multi-crystalline solar cell can be reduced due to the improved productivity compared with the standard process.

Electrical and Photoluminescence Characteristics of Nanocrystalline Silicon-Oxygen Superlattice for Silicon on Insulator Application

  • Seo, Yong-Jin
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제2C권5호
    • /
    • pp.258-261
    • /
    • 2002
  • Electrical forming dependent current-voltage (I-V) and numerically derived differential conductance(dI/dV) characteristics have been presented in the multi-layer nano-crystalline silicon/oxygen (no-Si/O) superlattice. Distinct staircase-like features, indicating the presence of resonant tunnel barriers, are clearly observed in the dc I-V characteristics. Also, all samples showed a continuous change in current and zero conductivity around OV corresponding to the Coulomb blockade in the calculated dI/dV-V curve. Also, Ra-man scattering measurement showed the presence of a nano-crystalline Si structure. This result becomes a step in the right direction for the fabrication of silicon-based optoelectronic and quantum devices as well as for the replacement of silicon-on-insulator (SOI) in high speed and low power silicon MOSFET devices of the future.

Present Status and Prospects of Thin Film Silicon Solar Cells

  • Iftiquar, Sk Md;Park, Jinjoo;Shin, Jonghoon;Jung, Junhee;Bong, Sungjae;Dao, Vinh Ai;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제2권2호
    • /
    • pp.41-47
    • /
    • 2014
  • Extensive investigation on silicon based thin film reveals a wide range of film characteristics, from low optical gap to high optical gap, from amorphous to micro-crystalline silicon etc. Fabrication of single junction, tandem and triple junction solar cell with suitable materials, indicate that fabrication of solar cell of a relatively moderate efficiency is possible with a better light induced stability. Due to these investigations, various competing materials like wide band gap silicon carbide and silicon oxide, low band gap micro-crystalline silicon and silicon germanium etc were also prepared and applied to the solar cells. Such a multi-junction solar cell can be a technologically promising photo-voltaic device, as the external quantum efficiency of such a cell covers a wider spectral range.

고효율 다결정 실리콘 태양전지 제작을 위한 나노크기의 피라미드 텍스쳐 제작 (Nanoscale Pyramid Texture for High Efficiency Multi-Crystalline Silicon Solar Cells)

  • 허종;박민준;지홍섭;김진혁;정채환
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.25-27
    • /
    • 2017
  • Nanoscale textured black silicon has attracted intensive attention due to its great potential as applications in multicrystalline silicon-based solar cells. It absorbs sunlight over a broad range of wavelengths but introduces large recombination centers, non-uniform doping into cell. In this study, we present a metal-assisted chemical etching technique plus alkaline etching process to fabricate nanoscale pyramid structures with optimized condition. To make the structures, silver nanoparticles-loaded mc-Si wafer was submerged into $H_2O_2/HF$ solution first for nanohole texturing the wafer and textured wafer etched again with KOH solution for making nanoscale pyramid structures. The average reflectivity (350-1050 nm) is about 8.42% with anti-reflection coating.

단결정 실리콘 태양전지를 위한 screen printing 전극과 photo lithography 다층전극의 적용에 대한 연구 (Application of Screen Printing and Photo Lithography Multi-layer Metal Contact for Single Crystalline Silicon Solar Cells)

  • 김도완;최준영;이은주;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.109-109
    • /
    • 2006
  • Screen printing (SP) metal contact is typically applied to the solar cells for mass production. However, SP metal contact has low aspect ratio, low accuracy, hard control of the substrate penetration and unclean process. On the other hand, photo lithograpy (PL) metal contact can reduce defects by metal contact. In this investigation, PL metal contact was obtained the multi-layer structure of Ti/Pd/Ag by e-beam process. We applied SP metal contact and PL metal contact to single crystalline silicon solar cells, and demonstrated the difference of conversion efficiency. Because PL metal contact silicon solar cell has Jsc (short circuit current density) better than silicon solar cell applied SP metal contact.

  • PDF

결정질 실리콘 태양전지의 효율 향상을 위한 다층 전면 전극 형성 (Multi-layer Front Electrode Formation to Improve the Conversion Efficiency in Crystalline Silicon Solar Cell)

  • 홍지화;강민구;김남수;송희은
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.1015-1020
    • /
    • 2012
  • Resistance of the front electrode is the highest proportion of the ingredients of the series resistance in crystalline silicon solar cell. While resistance of the front electrode is decreased with larger area, it induces the optical loss, causing the conversion efficiency drop. Therefore the front electrode with high aspect ratio increasing its height and decreasing is necessary for high-efficiency solar cell in considering shadowing loss and resistance of front electrode. In this paper, we used the screen printing method to form high aspect ratio electrode by multiple printing. Screen printing is the straightforward technology to establish the electrodes in silicon solar cell fabrication. The several printed front electrodes with Ag paste on silicon wafer showed the significantly increased height and slightly widen finger. As a result, the resistance of the front electrode was decreased with multiple printing even if it slightly increased the shadowing loss. We showed the improved electrical characteristics for c-Si solar cell with repeatedly printed front electrode by 0.5%. It lays a foundation for high efficiency solar cell with high aspect ratio electrode using screen printing.

UMG(Upgraded Metallurgical Grade) 규소 이용한 다결정 잉곳의 불순물 편석 예측 (Estimation of the impurity segregation in the multi-crystalline silicon ingot grown with UMG (Upgraded Metallurgical Grade) silicon)

  • 정광필;김영관
    • 한국결정성장학회지
    • /
    • 제18권5호
    • /
    • pp.195-199
    • /
    • 2008
  • 반도체용 규소 원료는 11 N급의 고순도이나 가격이 고가이고 또한 생산이 제한되어서 폭발적인 태양전지의 수요를 따르지 못하고 있어 저급(5$\sim$6 N)의 UMG(Upgraded Metallurgical Grade)를 사용하자 하는 노력이 진행 중이다. 이 5$\sim$6 N급에서는 dopant 원소인 붕소(B)외 인(P)의 농도가 1 ppm 이상 존재한다. 이들 원료를 사용하여서 결정 성장을 하였을 경우에 존재하는 여러 불순물들의 편석계수(segregation coefficient)를 활용하여 화학적, 전기적 성질을 예상 하여본 결과 결정성장 초기에는 붕소(B)의 농도가 인(P) 보다 높아 p영역이 발생하고 후반부에는 인의 농도가 붕소 보다 높아 n 형 기판이 생성됨을 보았다. 또한 응고속도를 조절하여 여러 불순물을 제거하고자 히는 노력은 편식계수가 적은 금속 일소들의 제거에는 효과적이나 편석계수가 큰 붕소와 인의 제거에는 효과가 크지 않음을 예상 할 수 있다.

Multiple-Bit Encodings of Bragg Photonic-structures by Using Consecutive Etch with Various Square Wave Currents

  • Lee, Bo-Yeon;Hwang, Minwoo;Cho, Hyun;Kim, Hee-Chol;Cho, Sungdong
    • 통합자연과학논문집
    • /
    • 제4권3호
    • /
    • pp.192-196
    • /
    • 2011
  • New method to encode multiple photonic features of Bragg type reflector on silicon wafer has been investigated. Multiple bit encodes of distributed Bragg reflector features have been prepared by electrochemical etching of crystalline silicon by using various square wave current densities. Optical characterization of multi-encoding of distributed Bragg reflectors on porous silicon was achieved by Ocean optics 2000 spectrometer for the search of possible applications of multiple bit encoding of distributed Bragg reflectors such as multiplexed assays and chemical sensors. The morphology and cross-sectional structure of multi-encoded distributed Bragg reflectors was investigated by field emission scanning electron micrograph.

Spin-On Dopants를 이용한 결정질 실리콘 태양전지의 n+ 에미터 형성에 관한 연구 (Investigation of n+ Emitter Formation Using Spin-On Dopants for Crystalline Si Solar Cells)

  • 조경연;이지훈;최준영;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.68-69
    • /
    • 2007
  • To make cost-effective solar cells, We have to use low cost material or make short process time or high temperature process. In solar cells, formation of emitter is basic and important technique according to build-up P-N junction. Diffusion process using spin-on dopants has all of this advantage. In this paper, We investigated n+ emitter formation spin-on dopants to apply crystalline silicon solar cells. We known variation of sheet resistance according to variation of temperature and single-crystalline and multi-crystalline silicon wafer using Honeywell P-8545 phosphorus spin-on dopants. We obtain uniformity of sheet resistance within 3~5% changing RPM of spin coater.

  • PDF