Browse > Article
http://dx.doi.org/10.21218/CPR.2017.5.1.025

Nanoscale Pyramid Texture for High Efficiency Multi-Crystalline Silicon Solar Cells  

Heo, Jong (Applied Optics and Energy Research Group, Korea Institute of Industrial Technology)
Park, Min-Joon (Applied Optics and Energy Research Group, Korea Institute of Industrial Technology)
Jee, Hong sub (Applied Optics and Energy Research Group, Korea Institute of Industrial Technology)
Kim, Jin Hyeok (Department of Material Science and Engineering, Chonnam National University)
Jeong, Chaehwan (Applied Optics and Energy Research Group, Korea Institute of Industrial Technology)
Publication Information
Current Photovoltaic Research / v.5, no.1, 2017 , pp. 25-27 More about this Journal
Abstract
Nanoscale textured black silicon has attracted intensive attention due to its great potential as applications in multicrystalline silicon-based solar cells. It absorbs sunlight over a broad range of wavelengths but introduces large recombination centers, non-uniform doping into cell. In this study, we present a metal-assisted chemical etching technique plus alkaline etching process to fabricate nanoscale pyramid structures with optimized condition. To make the structures, silver nanoparticles-loaded mc-Si wafer was submerged into $H_2O_2/HF$ solution first for nanohole texturing the wafer and textured wafer etched again with KOH solution for making nanoscale pyramid structures. The average reflectivity (350-1050 nm) is about 8.42% with anti-reflection coating.
Keywords
Multi-crystalline silicon; Solar cell; Nano-pyramid; Surface texturing; Photovoltaic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Battaglia, A. Cuevas, S. D. Wolf, "High-efficiency crystalline silicon solar cells : status and perspectives" Energy Environ, Sci., Vo1. 9, pp. 1552-1576, 2016.
2 M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, "Solar cell efficiency tables" Prog. Photovoltaics, Vol. 24, pp. 3-11, 2016.   DOI
3 X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X. F. Wang, M. Shen, X. Su, "18.45%-efficiency multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture" Adv. Funct. Mater., Vol. 24, pp. 6708-6716, 2014.   DOI
4 T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, E. Mazur, "Microstructuring of silicon with femtosecond laser pulses" Appl. Phys. Lett., Vol. 73, pp. 1673-1675, 1998.   DOI
5 J. Yoo, G. Yu, J. Yi, "Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE)" Sol. Energy Mat. Sol. Cells, Vol. 2, pp. 2-6, 2011.
6 F. Toor, H. M. Branz, M. R. Page, K. M. Jones, H. C. Yuan, Appl. Phys. Lett., Vol. 99, pp. 103501-103504, 2011.   DOI
7 J. Oh, H. C. Yuan, H. M. Branz, "An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures" Nat. Nanotechnol., Vol. 7, pp. 743-748, 2012.   DOI
8 M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. T. Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, "Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications" Nat. Mater., Vol. 9, pp. 239-244, 2010.   DOI
9 J. Schmidt, M. Kerr, "Highest-quality surface passivation of low-resistivity p-type silicon using stoichiometric PECVD silicom nitride" Sol. Energ. Mat. Sol. Cells, Vol. 65, pp. 585-591, 2001.   DOI