• Title/Summary/Keyword: Multi-criteria Decision Method

Search Result 196, Processing Time 0.027 seconds

Application of Analytic Hierarchy Process for the Selection of Cotton Fibers

  • Majumdar Abhijit;Sarkar Bijan;Majumdar Prabal Kumar
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.297-302
    • /
    • 2004
  • In many engineering applications, the final decision is based on the evaluation of a number of alternatives in terms of a number of criteria. This problem may become very intricate when the selection criteria are expressed in terms of different units or the pertinent data are difficult to be quantified. The Analytic Hierarchy Process (AHP) is an effective way in dealing with such kind of complicated problems. Cotton fiber is selected or graded, in the spinning industries, based on several quality criteria. However, the existing selection or grading method based on Fiber quality Index (FqI) is rather crude and ambiguous. This paper presents a novel approach of cotton fiber selection using the AHP methodology of Multi Criteria Decision Making.

Multi-objective Optimization of Marine 3/2WAY Pneumatic Valve using Compromise Decision-Making Method (절충의사결정방법을 이용한 선박용 3/2WAY 공압밸브의 다목적 최적설계)

  • Kim, Jun-Oh;Baek, Seok-Heum;Kim, Tae-Woo;Kang, Sangmo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.81-90
    • /
    • 2013
  • A study on the flow-structure characteristics of marine 3/2WAY pneumatic valve is essential for optimizing the performance of ship engines. It is important that the valve has desirable safety factor and reduced weight from safety and economic point of view. In this paper, flow-structure characteristics of pneumatic valve is obtained by being optimized based on the proper design criteria. The air with the pressure of 30 bar is the working fluid which is made to fill in the tack in short time. This time is defined as the filling time. On optimum design by considering the flow-structure characteristics, the approach is based on (1) the mathematical formulation of design decisions using the compromise decision-making method, and (2) the approximation technique of response surfaces. The methodology is demonstrated as the multi-objective optimization tool to improve the performance of marine 3/2WAY pneumatic valve.

Developing a Method to Define Mountain Search Priority Areas Based on Behavioral Characteristics of Missing Persons

  • Yoo, Ho Jin;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.293-302
    • /
    • 2019
  • In mountain accident events, it is important for the search team commander to determine the search area in order to secure the Golden Time. Within this period, assistance and treatment to the concerned individual will most likely prevent further injuries and harm. This paper proposes a method to determine the search priority area based on missing persons behavior and missing persons incidents statistics. GIS (Geographic Information System) and MCDM (Multi Criteria Decision Making) are integrated by applying WLC (Weighted Linear Combination) techniques. Missing persons were classified into five types, and their behavioral characteristics were analyzed to extract seven geographic analysis factors. Next, index values were set up for each missing person and element according to the behavioral characteristics, and the raster data generated by multiplying the weight of each element are superimposed to define models to select search priority areas, where each weight is calculated from the AHP (Analytical Hierarchy Process) through a pairwise comparison method obtained from search operation experts. Finally, the model generated in this study was applied to a missing person case through a virtual missing scenario, the priority area was selected, and the behavioral characteristics and topographical characteristics of the missing persons were compared with the selected area. The resulting analysis results were verified by mountain rescue experts as 'appropriate' in terms of the behavior analysis, analysis factor extraction, experimental process, and results for the missing persons.

Prioritization-Based Model for Effective Adoption of Mobile Refactoring Techniques

  • Alhubaishy, Abdulaziz
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.375-382
    • /
    • 2021
  • The paper introduces a model for evaluating and prioritizing mobile quality attributes and refactoring techniques through the examination of their effectiveness during the mobile application development process. The astonishing evolution of software and hardware has increased the demand for techniques and best practices to overcome the many challenges related to mobile devices, such as those concerning device storage, network bandwidth, and energy consumption. A number of studies have investigated the influence of refactoring, leading to the enhancement of mobile applications and the overcoming of code issues as well as hardware issues. Furthermore, rapid and continuous mobile developments make it necessary for teams to apply effective techniques to produce reliable mobile applications and reduce time to market. Thus, we investigated the influence of various refactoring techniques on mobile applications to understand their effectiveness in terms of quality attributes. First, we extracted the most important mobile refactoring techniques and a set of quality attributes from the literature. Then, mobile application developers from nine mobile application teams were recruited to evaluate and prioritize these quality attributes and refactoring techniques for their projects. A prioritization-based model is examined that integrates the lightweight multi-criteria decision making method, called the best-worst method, with the process of refactoring within mobile applications. The results prove the applicability and suitability of adopting the model for the mobile development process in order to expedite application production while using well-defined procedures to select the best refactoring techniques. Finally, a variety of quality attributes are shown to be influenced by the adoption of various refactoring techniques.

Development of Destination Optimal Path Search Method Using Multi-Criteria Decision Making Method and Modified A-STAR Algorithm (다기준의사결정기법과 수정 A-STAR 알고리즘을 이용한 목적지 최적경로 탐색 기법 개발)

  • Choi, Mi-Hyeong;Seo, Min-Ho;Woo, Je-Seung;Hong, Sun-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.891-897
    • /
    • 2021
  • In this paper, we propose a destination optimal route algorithm for providing route finding service for the transportation handicapped by using the multi-criteria decision-making technique and the modified A-STAR optimal route search algorithm. This is a method to set the route to the destination centering on safety by replacing the distance cost of the existing A-STAR optimal route search algorithm with the safety cost calculated through AHP/TOPSIS analysis. To this end, 10 factors such as road damage, curb, and road hole were first classified as poor road factors that hinder road driving, and then pairwise comparison of AHP was analyzed and then defined as the weight of TOPSIS. Afterwards, the degree of driving safety was quantified for a certain road section in Busan through TOPSIS analysis, and the development of an optimal route search algorithm for the transportation handicapped that replaces the distance cost with safety in the finally modified A-STAR optimal route algorithm was completed.

Application of the Analytic Hierarchy Process (AHP) on the National Nuclear R&D Projects (원자력연구개발사업의 사후평가를 위한 계층화 분석법(AHP)의 적용)

  • 곽승준;유승훈;신철오
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2001.05a
    • /
    • pp.369-385
    • /
    • 2001
  • A R&D project evaluation method has been applied for the national nuclear R&D projects in a developing-country setting. In the methodology, Saaty's analytic hierarchy process model is used to evaluate and rank of the selected nuclear R&D project which have a wide range of objectives and characteristics. The criteria used for evaluation related specifically to the Korea's evaluation needs and culture, and they are weighted according to their relative importance as perceived by the evaluator of the R&D project. As a real-world case of evaluation, we elicited and reproduced the evaluation process of the nuclear R&D projects which is going under the research process. As the results of the paper suggests, the methodology can be applied to the evaluation of the R&D projects and has much potential.

  • PDF

An optimization usability of information system project resources: using a QFD and Zero-One Goal Programming for reflection customer wants

  • Kim, Soung-Hie;Lee, Jin-Woo
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.1
    • /
    • pp.100-114
    • /
    • 2000
  • This paper demonstrates the application of a Quality Function Deployment (QFD) and Zero-One Goal Programming model for selecting interdependent information system project selection, there are a few research for interdependent IS project selection. Effective project evaluation necessities incorporating the many conflicting objectives of decision maker(s) into decision models. Among the many proposed methodologies of multi-criteria decision making (MCDM), Goal Programming (GP) is the most popular and widely used. The model departs from an earlier GP formulation of the problem that suggested QFD method for selection of priorities among the considered attributes or criteria. The application of the proposed methodology illustrated through an example.

  • PDF

Stepwise Decision making Methodology Based on Artificial Intelligence: An Application to Bearing Design (인공지능에 기반한 단계적 의사결정방법 : 베어링 설계에의 적용)

  • 서태설;한순홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.100-109
    • /
    • 1999
  • The bearing design includes the steps of selection bering type, selection bearing subtype, and determining the peripheral equipments. In this paper decision making methodologies are compared to propose a stepwise decision methodology to the bearing selection problem. An artificial neural network trained with design cases is used for selecting a bearing type in the first step. Then the subtype of the bearing is selected using the weighting method, high is a kind of multi-criteria decision making method. Finally, the types of peripheral equipments such as lubrication devices, seals and bearing housings are determined using a rule-based expert system.

  • PDF

Development of an Inundation Risk Evaluation Method Based on a Multi Criteria Decision Making (다기준 의사결정기법을 기반으로 하는 침수위험 평가기법의 개발)

  • Park, Moo-Jong;Choi, Sung-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.4
    • /
    • pp.365-377
    • /
    • 2008
  • In this study, PROMETHEE(Preference Ranking Organization METHod for Enrichment Evaluations) which is one of the multi criteria decision making methods is applied to estimate the relative inundation risk of the urban subcatchment. For this purpose, several factors which have an effect on the inundation risk are selected and used to perform PROMETHEE. Those are elevation average, slope average, density of conduit, population and sediment yields per unit area of each subcatchment. Based on them, PROMETHEE is performed and the relative inundation risk for each subcatchment is estimated. For the validation of the suggested method, the results from the suggested method are compared with the historical inundation records occured on 1998 and the relative inundation risk estimated by the method considering sediment yields per unit area only. From the comparison, it is found that the suggested method may generate better results to estimate the relative inundation risk of each subcatchment than the method considering sediment yields per unit area only. Also, it can be applied to establish a rehabilitation order of subcatchments for mitigating the inundation risk.

An efficient Decision-Making using the extended Fuzzy AHP Method(EFAM) (확장된 Fuzzy AHP를 이용한 효율적인 의사결정)

  • Ryu, Kyung-Hyun;Pi, Su-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.828-833
    • /
    • 2009
  • WWW which is an applicable massive set of document on the Web is a thesaurus of various information for users. However, Search engines spend a lot of time to retrieve necessary information and to filter out unnecessary information for user. In this paper, we propose the EFAM(the Extended Fuzzy AHP Method) model to manage the Web resource efficiently, and to make a decision in the problem of specific domain definitely. The EFAM model is concerned with the emotion analysis based on the domain corpus information, and it composed with systematic common concept grids by the knowledge of multiple experts. Therefore, The proposed the EFAM model can extract the documents by considering on the emotion criteria in the semantic context that is extracted concept from the corpus of specific domain and confirms that our model provides more efficient decision-making through an experiment than the conventional methods such as AHP and Fuzzy AHP which describe as a hierarchical structure elements about decision-making based on the alternatives, evaluation criteria, subjective attribute weight and fuzzy relation between concept and object.