
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

375

Manuscript received December 5, 2021
Manuscript revised December 20, 2021

https://doi.org/10.22937/IJCSNS.2021.21.12.52

Prioritization-Based Model for Effective Adoption of Mobile
Refactoring Techniques

 Abdulaziz Alhubaishy
College of Computing and Informatics, Saudi Electronic University

Riyadh 11673, Saudi Arabia
a.alhubaishy@seu.edu.sa

Abstract
The paper introduces a model for evaluating and

prioritizing mobile quality attributes and refactoring
techniques through the examination of their effectiveness
during the mobile application development process. The
astonishing evolution of software and hardware has
increased the demand for techniques and best practices to
overcome the many challenges related to mobile devices,
such as those concerning device storage, network
bandwidth, and energy consumption. A number of studies
have investigated the influence of refactoring, leading to the
enhancement of mobile applications and the overcoming of
code issues as well as hardware issues. Furthermore, rapid
and continuous mobile developments make it necessary for
teams to apply effective techniques to produce reliable
mobile applications and reduce time to market. Thus, we
investigated the influence of various refactoring techniques
on mobile applications to understand their effectiveness in
terms of quality attributes. First, we extracted the most
important mobile refactoring techniques and a set of quality
attributes from the literature. Then, mobile application
developers from nine mobile application teams were
recruited to evaluate and prioritize these quality attributes
and refactoring techniques for their projects. A
prioritization-based model is examined that integrates the
lightweight multi-criteria decision making method, called
the best-worst method, with the process of refactoring
within mobile applications. The results prove the
applicability and suitability of adopting the model for the
mobile development process in order to expedite
application production while using well-defined procedures
to select the best refactoring techniques. Finally, a variety
of quality attributes are shown to be influenced by the
adoption of various refactoring techniques.

Key words:
Refactoring Techniques, Quality Attributes, Multi-Criteria
Decision Making Methods, Best-Worst Method.

1. Introduction

Refactoring refers to the process of changing internal
codestructure without affecting its external behaviour by

improvingthe code’s design [1] [2]. Refactoring is
important becauseof the rapid evolution of software
projects where there is anincreasing need to enhance
and adapt software to meet newrequirements. This rapid
evolution is resulting in a reductionin software quality;
therefore, it is important to adopt a set ofrefactoring
techniques (RTs) to improve the internal qualityof
software and reduce system complexity [3] [4].
Additionalbenefits of refactoring include improving the
quality of adeveloper’s productivity through the
enhancement of codemaintainability and understandability
[5].

Considering the role of mobile development, RTs can
influence the performance of developed/enhanced mobile
applications. As has been noted, “it is often unclear to
software designers how to use refactoring methods to
improve specific quality attributes” [6]. In order to
successfully adopt the refactoring process, a number of
activities should be performed, with team members first
identifying which part of the software needs to be refactored
and which RT should be applied [3]. Also, team members
should assess the effect of refactoring on code quality while
also maintaining consistency between all software artifacts
after applying refactoring. Yet, there is no clear procedure
regarding how to identify which code to refactor, nor which
refactoring methods to adopt.

The authors in [6] have proposed a classification of
refactoring methods based on their measurable effect on
software quality attributes (QAs). The main objective was
to help software designers choose the appropriate RTs to
improve the quality of a design. In line with these authors,
our objective is to propose a model to identify the most
important RTs when developing mobile applications, while
preserving the performance and other quality factors during
all refactoring activities. In this paper, a multi-criteria
decision making (MCDM) method—namely, the best-worst
method (BWM)—is adopted to help developers evaluate a
set of RTs in terms of various QAs in order to maximize the
benefits of refactoring in mobile applications. Thus, the
main objectives of this paper are summarized as follows.

1. Develop an efficient model for prioritizing the QAs and

RTs in mobile applications.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

376

2. Promote productivity and resolve conflicts among team
members by adopting the mathematical optimization in
the proposed model.

3. Test and evaluate the proposed model in real mobile
application projects.

The remainder of this paper is structured as follows:
Section 2 highlights the main studies that consider adopting
RTs within mobile development to either overcome a
challenge or enhance a QA. Section 3 justifies structuring
the selection of RTs in mobile development as a MCDM
problem and adopting the BWM to solve it. Section 4
introduces the prioritization model and mathematically
represent the problem. Section 5 summarizes the case study
and its design, while the analysis and discussion of the
conducted case study are presented in 6. Finally, sections 7
and 8 present threats to the validity of the study and a
conclusion, respectively.

2. LITERATURE REVIEW

Omotunde et al. introduced a framework to minimize
redundancy within the Android environment based on RTs
[7]. The authors adopted an approach for minimizing test
cases by identifying lazy class code smells depending on
two factors: dependency and cohesion of the source code.
They applied the inline class refactoring pattern within the
Android development to remove the lazy class bad smell
that might cause repetitive test cases. Direct attention
thinking tools (DATT) were introduced in order to automate
the refactoring practice within the development process
before test case generation. The DATT framework includes
four main steps, which are: designing detection rules for the
lazy class, designing refactoring rules for the identified
smell, implementing the identifying rules in DATT, and
evaluation of the implementation [7]. The authors found
that adopting code refactroing before test case generation
minimized the test cases by 33.3%; in addition, testing costs
and effort can be minimized by removing the bad smells
from the code prior the creation of test cases [7].

Cruz and Abreu investigated the benefits that automated
refactoring could offer to mobile development that help
development teams to create energy-efficient applications
[8]. The authors introduced a tool called Leafactor, which
was able to apply automated refactoring on five energy code
smells: View Holder, Draw Allocation, Wake Lock,
Recycle and ObsoleteLayoutParam. In addition, code
smells in 140 open-source applications gathered from F-
droid were analyzed using the Leafactor tool. Their
investigation yielded an aggregate of 222 refactorings in 45
applications.

Wongpiang and Muenchaisri introduced a method for
choosing the sequence of refactoring patterns used for code
altering dependent on the Greedy Algorithm [9]. This
approach was applied in order to distinguish the optimized

refactoring pattern sequence from the conceivable
refactoring patterns. Thus, to compute the system
maintainability for each refactoring strategy, they focused
on three measurements: lack of cohesion in method
(LCOM), weighted method per class (WMC), and coupling
between objects (CBO) [9].

Zhao and Hayes conducted two case studies in order to
research a method that determines which classes and
packages should be refactored as per different measures,
such as code size, complexity, and coupling [10]. Utilizing
a measure-driven refactoring decision, the authors
introduced a rank-based software in order to strengthen the
developers’ decisions about how to handle resources when
practicing refactoring [10].

Palomba et al. studied the impact of code smells on the
energy consumption of Android mobile applications [11].
The authors conducted a large-scale empirical investigation
on the impact of nine Android-particular code smells on the
energy utilization of 60 Android applications. The authors
focused on the design defects that are expected to be
identified with the non-functional characteristics of base
code. Moreover, in order to detect bad code smells,
Palomba et al. developed a detector called aDoctor that can
extricate basic properties from the base code of Android
mobile applications in order to identify code smells such as
Leaking Thread, Inefficient Data Structure, and Durable
Wakelock [11]. The investigation found that methods
influenced by some code smells used up to 87 times more
than methods influenced by other code smell types, and it
introduced the refactoring practice as a way to decrease
energy utilization in all circumstances.

Va ́squez et al. used the DECOR framework to look for
occurrences of 18 object-oriented anti-patterns in mobile
applications [12]. The objective of this investigation was to
determine if a relationship exists between the appearance of
bad smells and quality-related measurements, as well as
between application categories and the appearance of bad
smells in Java mobile applications. Through an
investigation of 1343 Java mobile applications that reside
within 13 domains, the authors indicated that code smells
have a negative influence on the fault-proneness of mobile
applications. Furthermore, they noticed that several code
smells were more related to particular applications
categories [12].

Hecht introduced the Paprika tool in order to investigate
Android applications and detect object-oriented code smells
[13]. The presented tool was based on three main phases.
As an initial step, PAPRIKA examines the APK file of the
mobile application under investigation to derive application
meta-data and a portrayal of the source code [13]. In
addition, other meta-data, like application rating, were
derived from the Google Play Store and used as arguments.
The tool supports two types of measurements, which are
object-oriented and Android-particular metrics, concerning,
for example, inheritance and number of services,

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

377

respectively. During the second phase, the model is entered
into a chart database as an adaptable solution to investigate
mobile applications on a larger scale. In the third step,
querying is done in order to detect bad code smells from the
analyzed mobile applications [13].

Morales et al. presented a method for refactoring mobile
applications with respect to energy utilization, named
EARMO, based on the use of multi-objective patterns [14].
They assessed it with a benchmark of 20 open-source
Android applications extracted from F-droid. The authors
noted using EARMO solutions to eliminate 84% of code
smells within an execution time of less than a minute.
Moreover, they noticed that the energy consumption of
three mobile applications was enhanced with important
outcomes regarding the difference in energy utilization after
refactoring [14].

Finally, it is important to mention that some studies,
such as [15], have found that refactoring certain mobile
application code smells may negatively impact major
development factors, such as resulting in insufficient usage
of hardware resources. Therefore, the development team
should be able to predict the consequences of applying
different refactoring patterns during mobile application
development.

3. THE APPLICABILITY OF BWM IN

MOBILE DEVELOPMENT

Studying the applicability of integrating MCDM
methods in mobile application development has been
considered by several researchers, such as [16], [17], [18],
[19]. The authors have highlighted that the development
process and activities inside it encourage to formulate
various problems and solve them using MCDM to find the
optimal solution that lead to achieve a common goal to the
software development team, such as lowering cost and time
for completion. For example, the analytic hierarchy process
(AHP) was introduced in order to prioritize mobile
application requirements [19]. The study has revealed
enhancing in user satisfaction by taking into account the
user preferences and prioritize mobile application
requirements accordingly.

Refactoring helps the mobile development team to
speed up the coding process and find defects early. A recent
study determined nine insertion points for the Mobile-D
process [20]. One of these points is ranking refactoring
patterns, where developers formulate a problem and solve it
using the BWM during the productionize phase of Mobile-
D.

Fowler has classified more than 70 RTs into six
different categories [2]. These RTs have different impacts
on code quality attributes. It is significant to mention that
each project may have different priorities with respect to
code QAs depending on several features, such as the
application type and the developers’ perspectives. Applying

refactoring enhances the design and the code of the mobile
application; therefore, it is important to direct the
developers’ efforts towards the most significant attribute in
order to guarantee the targeted value of the system. Thus,
deciding which refactoring patterns to apply can generate
conflict within the development team and be time
consuming. In this paper, we adopt the BWM, which
overcomes previous issues, while concentrating on
prioritizing a set of refactoring patterns, based on Fowler’s
categorization [2], with respect to their impacts on code
QAs.

4. A PRIORITIZATION-BASED MODEL

Our proposed model integrates team members’

experiences and knowledge with the BWM to provide
mobile application developers with a unified process for
conducting refactoring activities. The model applies all
BWM steps in the domain of mobile application
development, regardless of the underlying development
process. To illustrate the model, Figure 1 explains the
process for prioritizing both QAs and RTs. Adopting the
steps to prioritize QAs leads the development team to
identify the most important QAs that the project should
consider. Meanwhile, adopting the steps to prioritize RTs
leads the development team to identify the most important
RTs to apply on the project.

To mathematically represent the process, we only
elaborate on the process of prioritizing RTs, whereas QAs
can be represented similarly. Thus, the following steps are
for prioritizing RTs:

1. A team member evaluates a set of RTs (Rt1 , Rt2 , ...
Rtn) as follow:

1.1. The member chooses the most important RT
(RtB) for the project.

1.2. Themember chooses the least important RT
(RtW) for the project.

1.3. The member determines the preference of RtB
over all others (Rt1, Rt2, ... Rtn).

1.4. The member determines the preference of all
RTs (Rt1, Rt2, ... Rtn) over RtW .

2. For each member’s evaluation, calculate the optimal
weight of all RTs (WRt1 , WRt2 ,...WRtn) including
WRtB and WRtW .

3. Aggregate optimal weights from all participants and
calculate the average weights.

4. Give the final prioritization based on the resulted
average weights.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

378

5.

Fig. 1: Prioritization-Based Model in Mobile Application Development.

To calculate the optimal weights of all RTs, we bring
the author’s model represented in [21] into the domain
of mobile application development, as follows:
To determine the optimal weight (WRt1, WRt2,...WRtn)
of all Rt1, Rt2, ... Rtn, the maximum absolute differences

𝑎𝑅𝑡 	and	 𝑎𝑅𝑡 	for all n are

minimized. Thus, the following model is introduced:

𝑚𝑖𝑛𝑚𝑎𝑥 𝑎𝑅𝑡 , 𝑎𝑅𝑡 												(1)	

Where aRT Bn is the preference of RtB over Rtn, and aRtnW

is the preference of Rtn over RtW . Such that:

𝑊𝑅𝑡 1

𝑊𝑅𝑡 0 for all n

After calculating the optimal weight for each developer
based on the previous model, we need to ensure that the

comparisons are consistent. Rezaei has defined a
consistency index for each comparison’s value [22], and a
consistency ratio was introduced to determine if a set of
evaluations is more or less consistent [21]. Consistency
ratio values range between 0 and 1, where values closer to
1 suggest more consistency than values closer to 0.

5. CASE STUDY

Toward the beginning of using the BWM in mobile
development, it was important to study the benefits and
abilities of the BWM by proposing the related criteria and
the RTs. In previous studies, several RTs have been
mentioned more frequently than others. Thus, we started by
identifying the main techniques used in mobile
development. Despite the fact that each project might have
a different set of valuable QAs, decision makers need to
specify the most important attributes based on their projects.
Our main objective was to test whether or not employing
the BWM enabled us to extract the most important RTs to
help accomplish the refactoring process effectively.
Therefore, we have highlighted eight of the most important

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

379

RTs used, which are extract class, extract method, move
field, inline method, inline class, pull up method, pull up
field, and hide method. Furthermore, we have highlighted
five of the most important QAs, which are complexity,
maintainability, coupling, flexibility, and cohesion.

Then, we started by customizing the BWM solver,
proposed by Rezaei in [23], to acquire developers’
preferences. The solver was redesigned to guide
participants on how to apply the BWM to evaluate the RTs,
as shown in Figure 2. We only kept the main fields that the
participants need to fill in and excluded the process of
calculating the weight of the techniques for two reasons.
First, we do not want the participants to be distracted by too
many instructions and calculations. Second, the BWM
solver calculates the weights of RTs based on individual
inputs, while we want to calculate the weights based on a
group of participants. There are some methods used to
calculate the weight based on a group of decision makers,
such as bayesian BWM [24]. For simplicity, we chose to
adopt the average method, which considers the average
operator in order to calculate the average weight from a

group of decision makers. Although this method could be
negatively impacted by outliers data, the risk is minimized
because we recruited experts from the information
technology industry with a minimum of five years of
experience in mobile development.

We provided participants with the complete instructions
regarding how to follow the required steps, as shown in
Figure 2. First, the participant is informed of the main
purpose of the study, which is to understand the importance
of various RTs in mobile development by adopting the
BWM. During the project and before adopting any of the
RTs, the participants must provide an evaluation of these
techniques. The AHP fundamental scale, as introduced by
[25], was provided to participants to acquire their subjective
evaluations of the RTs.

We conducted the case study on multiple mobile
projects with different project characteristics and team sizes.
Participants from nine different teams used the method to
evaluate the RTs and QAs. Most of the mobile application
projects were developed for local companies in Saudi
Arabia.

Fig. 2: Pairwise Comparisons Form and Instructions to Guide Participants

6. RESULTS AND DISCUSSION

After collecting the evaluations for each project, we
calculated the weight of each QA and RT. Then, we
aggregated all evaluations to come up with the average
weight of each QA and RT for all mobile projects. Table 1
shows the results regarding the five QAs for each project.
The results show the diversity of the weights among the

various projects. Maintainability was ranked as the most
important QA in four projects. Complexity, cohesion, and
flexibility constituted the most important QAs in two
projects.

The ranking of all QAs is shown in Table 2. The ranking
was based on the average weight for all nine projects.
Maintainability and complexity constituted around 50% of
the weights, followed by cohesion, flexibility, and coupling.
See Figure 3.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

380

Table 1: Weight of Quality Attributes for Each Project

The consistency ratio, as described by Rezaei [21],
should be between 0 and 1, where a value close to 1 shows
less consistency and a value close to 0 shows more
consistency. In all projects, we achieved high consistency,
as the highest value was 0.306, and the lowest value was
0.054.

Table 2: Prioritizing of Mobile Quality Attributes

Fig. 3: The Weight of Quality Attributes in Mobile Applications

Similarly, after completing the pairwise comparisons of

the eight RTs chosen by participants, all evaluations were
aggregated, and the average weights of all RTs were
calculated to come up with the overall ranking and
corresponding weight for each RT, as illustrated in Table 3.
In six out of nine projects, the extract method was ranked as
the most important RT. Extract class comes second, as it
was selected in three projects. Note that in two projects,
extract method and extract class were both ranked as the
most important technique. Inline class was ranked as most
important in only one project. In project eight, all
techniques except inline class and pull up field were equally
important.

Table 3: Weight of Refactoring Techniques for Each Project

The consistency values for all projects show high

consistency, as the highest value was 0.136, and the lowest
value was 0.049.

The overall ranking, as illustrated in Table 4, shows that
the extract method was the highest ranking (24%), followed
by extract class (18.4%). The results show that all other RTs
ranged from 8% to 10%. Figure 4 depicts the final ranking
of all RTs.

Table 4: Prioritizing of Mobile Refactoring Techniques

Fig. 4: The Weight of Refactoring Techniques in Mobile

Applications

Lastly, we compared the weight of each QA in each
project with the weight of each RT in that project to infer
the level of importance. In other words, with respect to the
project QAs, we analyzed which RT was selected as
important in that project and which were not. Generally, we
divided the RTs into three groups, where ↑ denotes the
increased impact of that RT on the code QA, ↓ denotes the
decreased impact of that RT on the code QA, and 0 denotes
no impact of the RT on the code QA. Table 5 shows the
impact of all RTs on QAs.

 Table 5: Impact of Applying Refactoring on Quality Attributes for all Projects

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

381

7. THREATS TO VALIDITY

The two main types of validity are internal and external
validity. Testing internal validity involves testing if an
experimental treatment makes a difference or not and if an
experiment provides sufficient evidence to support a
specific claim. External validity refers to the
generalizability of the treatment outcomes. For internal
validity, we conducted the study on mobile applications
where all of them were under development and team
members were actually in the process of selecting a RT or
RTs for their projects. There might be a difference in terms
of participants work on different projects, but what most
concerned us was the applicability of the model regardless
of whether a certain RT or RTs should be used in all similar
cases or not. For external validity, we sought participants
from nine different projects with different sized teams and
project characteristics, along with different focuses on QAs
for each project. Lastly, It is important to mention that our
results might be affected by factors that can influence the
participants’ moods, emotions, and/or affective states.
However, the applied method has been evaluated in various
prioritizing problems and domains, as shown in [26], and it
proved reliable.

8. CONCLUSION

This paper evaluates the impact of some of the RTs
widely used in mobile application developments. The paper
proposes and adopts a prioritization-based model to conduct
the evaluation of the RTs and provide developers with a
unified process to prioritize these techniques. The selection
accommodates all developers’ evaluations and preferences
regarding the impact of RTs with respect to the QAs of the
developed application. The model was tested on nine
mobile applications under development. Results showed
that adopting the model within mobile development
provided a unified solution to be followed by all team
members, where the evaluations and experience of team
members were considered to produce this solution. In future
work, we will extend testing the model by evaluating the
impact of other techniques on all internal and external QAs.
Furthermore, we will investigate how various RTs might
collectively have more or less impact on QAs.

REFERENCES
1. W. F. Opdyke, “Refactoring: A program restructuring aid in

designing object-oriented application frameworks,” Ph.D.
dissertation, PhD thesis, University of Illinois at Urbana-
Champaign, 1992.

2. M. Fowler, “Refactoring: improving the design of existing
code”. Addison-Wesley Professional, 2018.

3. T. Mens and T. Tourwe ,́ “A survey of software refactoring,”
IEEE Transactions on software engineering, vol. 30, no. 2, pp.
126–139, 2004.

4. K. Stroggylos and D. Spinellis, “Refactoring–does it improve
software quality?” in Fifth International Workshop on
Software Quality (WoSQ’07: ICSE Workshops 2007). IEEE,
2007, pp. 10–10.

5. C. Abid, V. Alizadeh, M. Kessentini, T. d. N. Ferreira, and D.
Dig, “30 years of software refactoring research: a systematic
literature review,” arXiv preprint arXiv:2007.02194, 2020.

6. K. O. Elish and M. Alshayeb, “A classification of refactoring
methods based on software quality attributes,” Arabian
Journal for Science and Engineering, vol. 36, no. 7, pp. 1253–
1267, 2011. H. Omotunde, R. Ibrahim, M. Ahmed,

7. R. Olanrewaju, N. Ibrahim, and H. Shah, “A framework to
reduce redundancy in android test suite using refactoring,”
Indian Journal of Science and Technology, vol. 9, no. 46, pp.
1–7, 2016.

8. L. Cruz and R. Abreu, “Using automatic refactoring to
improve energy efficiency of android apps,” arXiv preprint
arXiv:1803.05889, 2018.

9. R. Wongpiang and P. Muenchaisri, “Selecting sequence of
refactoring techniques usage for code changing using greedy
algorithm,” in 2013 IEEE 4th International Conference on
Electronics Information and Emergency Communication.
IEEE, 2013, pp. 160–164.

10. L. Zhao and J. H. Hayes, “Rank-based refactoring decision
support: two studies,” Innovations in Systems and Software
Engineering, vol. 7, no. 3, p. 171, 2011.

11. F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A.
De Lucia, “On the impact of code smells on the energy
consumption of mobile applications,” Information and
Software Technology, vol. 105, pp. 43– 55, 2019.

12. M.LinaresVa ́squez, S.Klock, C.McMillan, A.Sabane ́,
D.Poshyvanyk, and Y.G. Gue h́e ́neuc, “Domain matters:
bringing further evidence of the relationships among
antipatterns, application domains, and quality-related metrics
in java mobile apps,” in Proceedings of the 22nd International
Conference on Program Comprehension, 2014, pp. 232– 243.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

382

13. G. Hecht, “An approach to detect android antipatterns,” in
2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 2. IEEE, 2015, pp. 766–768.

14. R. Morales, R. Saborido, F. Khomh, F. Chicano, and G.
Antoniol, “Earmo: An energy-aware refactoring approach for
mobile apps,” IEEE Transactions on Software Engineering,
vol. 44, no. 12, pp. 1176–1206, 2017.

15. J. Oliveira, M. Viggiato, M. F. Santos, E. Figueiredo, and H.
Marques- Neto, “An empirical study on the impact of android
code smells on resource usage.” in SEKE, 2018, pp. 314–313.

16. G. Bu ̈yu ̈ko z̈kan, “Determining the mobile commerce user
requirements using an analytic approach,” Computer
Standards & Interfaces, vol. 31, no. 1, pp. 144–152, 2009.

17. S. Nikou, J. Mezei, and H. Bouwman, “Analytic hierarchy
process (ahp) approach for selecting mobile service category
(consumers’ preferences),” in 2011 10th International
Conference on Mobile Business. IEEE, 2011, pp. 119–128.

18. S. Nikou and J. Mezei, “Evaluation of mobile services and
substantial adoption factors with analytic hierarchy process
(ahp),” Telecommunications Policy, vol. 37, no. 10, pp. 915–
929, 2013.

19. O. Yildirim and S. Peker, “Prioritizing use cases for
development of mobile apps using ahp: A case study in to-do
list apps,” in International Conference on Mobile Web and
Intelligent Information Systems. Springer, 2019, pp. 308–315.

20. A. Aljuhani and A. Alhubaishy, “Incorporating a decision
support approach within the agile mobile application
development process,” in 2020 3rd International Conference
on Computer Applications & Information Security (ICCAIS).
IEEE, 2020, pp. 1–6.

21. J. Rezaei, “Best-worst multi-criteria decision-making
method: Some properties and a linear model,” Omega, vol.
64, pp. 126–130, 2016.

22. ——, “Best-worst multi-criteria decision-making method,”
Omega, vol. 53, pp. 49–57, 2015.

23. ——, “Bwm solvers. solver linear bwm.” [Online].
Available: https://bestworstmethod.com/software/

24. M. Mohammadi and J. Rezaei, “Bayesian best-worst method:
A probabilistic group decision making model,” Omega, vol.
96, p. 102075, 2020.

25. T. L. Saaty, “How to make a decision: the analytic hierarchy
process,” European journal of operational research, vol. 48,
no. 1, pp. 9–26, 1990.

26. X. Mi, M. Tang, H. Liao, W. Shen, and B. Lev, “The state-
of-the-art survey on integrations and applications of the best
worst method in decision making: Why, what, what for and
what’s next?” Omega, vol. 87, pp. 205–225, 2019.

