• Title/Summary/Keyword: Multi-coupled

Search Result 733, Processing Time 0.024 seconds

AERODYNAMIC OPTIMIZATION OF MULTI-ELEMENT AIRFOILS FOR LIFT ENHANCEMENT (다중 익형 주위의 고양력을 위한 위치 최적화)

  • Lee, Dae-Il;Choi, Byung-Chul;Park, Young-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.441-446
    • /
    • 2011
  • To investigate aerodynamic performance of high-lift devices, 2D design is the base of the success of high-lift system design for transport aircraft, which can shorten the periods of three-dimensional design and analysis. For the simulation coupled viscous and inviscous euler method (MSES) is used. In this parametric study, Gap and Overlap which can define position of flap is used as design variables and we investigale relation between angle of attack and flap position for lift enhancement.

  • PDF

3D modeling of plasma characteristics for multi-segment antenna inductively coupled plasma (3D ICP에서 multi-segment antenna 구성에 따른 플라즈마 특성 모델링)

  • Yang, Won-Gyun;Kim, Yeong-Uk;Go, Seok-Il;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.99-100
    • /
    • 2007
  • 유도결합 플라즈마(ICP)를 이용한 CVD 장치에서 플라즈마를 발생시키기 위한 안테나의 구조는 매우 중요하다. 전자 온도와 전자 밀도에 직접적인 영향을 주게 되며, 뿐만 아니라 증착 물질의 두께 균일도에 결정적인 역할을 하게 된다. 본 연구에서는 플라즈마 특성 균일도 최적화를 위하여 2turn 직렬, 병렬, 혼합의 ICP 안테나의 구조에 대하여 플라즈마 특성 및 $SiO_2$ CVD 증착 특성을 계산하였다.

  • PDF

Crosstalk Analysis of Coupled Lines Connected with Vias in a 4-Layer PCB (4층 기판에서 비아로 연결된 결합 선로의 누화 해석)

  • Han Jae-Kwon;Park Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.529-537
    • /
    • 2006
  • Multi-layer PCBs are of ien used In compact microwave circuit design as density of PCB layout is increased. In this paper, the crosstalk between coupled lines connected with vias in a 4-layer PCB is investigated theoretically based on the circiuit-concept approach. Coupled lines connected with vias in a 4-layer PCB are divided into three sections, which are coupled microstrip lines and upper via section, center via section, and lower via and coupled microstrip lines section, respectively. Each section is represented by ABCD matrix. By cascading these three ABCD matrices crosstalk between coupled lines connected with vias in a 4-layer PCB is approximately calculated. The validity of this theoretical approach is verified by comparing the calculated results with the simulated ones using HFSS.

Acoustic Properties of Three-room Coupled System by Connected Two Apertures (개구부로 연결된 3중 커플룸의 음향특성)

  • Na, Hae Joong;Lim, Byoung-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.340-349
    • /
    • 2016
  • A coupled room system consists of adjacent rooms and apertures where the sound energy is exchanged between the two rooms. Acoustically, a coupled room system shows a non-exponential decay profile. Most of the related researches have been to analyze the acoustic properties of two-room coupled system so far whereas three-room coupled system were seldom studied. In this regard, this paper aims to analyse the distribution of sound pressure level, sound decay curve of three-room coupled system and sound energy flow between them by using the acoustic diffusion model and to further verify them through experiments. Firstly, the sound pressure level distribution and mean sound pressure level in the steady-state condition are analyzed at various frequencies and source locations. Good agreements are observed in both experiments and analysis results. Secondly, two double slope effect quantifiers of sound attenuation, LDT/EDT and LDT/T10 are compared at various frequencies and for different source locations. The result indicates that LDT/T10, less affected by the early reflection patterns than LDT/EDT, is more suitable to the analysis and experiments of a multi-slope sound decay curve. Lastly, the sound energy flow in each room is analyzed based on the acoustic diffusion model. After the early decay stage, the sound energy is observed to flow from the room with a long reverberation time to the room with a short one.

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.

A coupled geomechanical reservoir simulation analysis of CO2 - EOR: A case study

  • Elyasi, Ayub;Goshtasbi, Kamran;Hashemolhosseini, Hamid
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.423-436
    • /
    • 2016
  • Currently, there is a great interest in the coupling between multiphase fluid flow and geomechanical effects in hydrocarbon reservoirs and surrounding rocks. The ideal solution for this coupled problem is to introduce the geomechanical effects through the stress analysis solution and implement an algorithm, which assures that the equations governing the flow and stress analyses are obeyed in each time step. This paper deals with the implementation of a program (FORTRAN90 interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators, using a partial coupling algorithm. The explicit coupled hydro-mechanical behavior of Iranian field during depletion and $CO_2$ injection is studied using the soils consolidation procedure available in ABAQUS. Time dependent reservoir pressure fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS. The FEM analysis of the reservoir showed no sign of plastic strain under production and $CO_2$ injection scenarios in any part of the reservoir and the stress paths do not show a critical behavior.

Crosstalk Analysis accrording to Characteristics of Pulse Signal on the Multi Microstriplines unsing the SPICE (SPICE를 이용한 마이크로스트립 다중 전송선로에서 펄스 특성에 따른 선로의 누화특성 해석)

  • 김기래;이영철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.79-85
    • /
    • 1999
  • The propagation properties of the high speed pulse signal in time domain using the equivalent circuits for the analysis by SPICE on the coupled microstrip lines are investigated. In this paper, the SPICE program is used for the crosstalk analysis on the coupled microstrip lines. The results of crosstalk of coupled microstrip lines compared to one by Branin and FDTD method. And the near-end and far-end crosstalk on coupled lines are analyzed for the square pulse and trapezoidal pulse. The results of this paper are apply To the determination for the geometric structure and the frequency of signal pulse in design of MIC and MMIC by the CAD program.

  • PDF

Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory

  • Vinyas, M.;Harursampath, D.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.667-684
    • /
    • 2020
  • In this article, the static responses of layered magneto-electro-thermo-elastic (METE) plates in thermal environment have been investigated through FE methods. By using Reddy's third order shear deformation theory (TSDT) in association with the Hamilton's principle, the direct and derived quantities of the coupled system have been obtained. The coupled governing equations of METE plates have been derived through condensation technique. Three layered METE plates composed of piezoelectric and piezomagnetic phases are considered for evaluation. For investigating the correctness and accuracy, the results in this article are validated with previous researches. In addition, a special attention has been paid to evaluate the influence of different electro-magnetic boundary conditions and pyrocoupling on the coupled response of METE plates. Finally, the influence of stacking sequences, magnitude of temperature load and aspect ratio on the coupled static response of METE plates are investigated in detail.

Application of a new neutronics/thermal-hydraulics coupled code for steady state analysis of light water reactors

  • Safavi, Amir;Esteki, Mohammad Hossein;Mirvakili, Seyed Mohammad;Arani, Mehdi Khaki
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1603-1610
    • /
    • 2020
  • Due to ever-growing advancements in computers and relatively easy access to them, many efforts have been made to develop high-fidelity, high-performance, multi-physics tools, which play a crucial role in the design and operation of nuclear reactors. For this purpose in this study, the neutronic Monte Carlo and thermal-hydraulic sub-channel codes entitled MCNP and COBRA-EN, respectively, were applied for external coupling with each other. The coupled code was validated by code-to-code comparison with the internal couplings between MCNP5 and SUBCHANFLOW as well as MCNP6 and CTF. The simulation results of all code systems were in good agreement with each other. Then, as the second problem, the core of the VVER-1000 v446 reactor was simulated by the MCNP4C/COBRA-EN coupled code to measure the capability of the developed code to calculate the neutronic and thermohydraulic parameters of real and industrial cases. The simulation results of VVER-1000 core were compared with FSAR and another numerical solution of this benchmark. The obtained results showed that the ability of the MCNP4C/COBRA-EN code for estimating the neutronic and thermohydraulic parameters was very satisfactory.

The JFNK method for the PWR's transient simulation considering neutronics, thermal hydraulics and mechanics

  • He, Qingming;Zhang, Yijun;Liu, Zhouyu;Cao, Liangzhi;Wu, Hongchun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.258-270
    • /
    • 2020
  • A new task of using the Jacobian-Free-Newton-Krylov (JFNK) method for the PWR core transient simulations involving neutronics, thermal hydraulics and mechanics is conducted. For the transient scenario of PWR, normally the Picard iteration of the coupled coarse-mesh nodal equations and parallel channel TH equations is performed to get the transient solution. In order to solve the coupled equations faster and more stable, the Newton Krylov (NK) method based on the explicit matrix was studied. However, the NK method is hard to be extended to the cases with more physics phenomenon coupled, thus the JFNK based iteration scheme is developed for the nodal method and parallel-channel TH method. The local gap conductance is sensitive to the gap width and will influence the temperature distribution in the fuel rod significantly. To further consider the local gap conductance during the transient scenario, a 1D mechanics model is coupled into the JFNK scheme to account for the fuel thermal expansion effect. To improve the efficiency, the physics-based precondition and scaling technique are developed for the JFNK iteration. Numerical tests show good convergence behavior of the iterations and demonstrate the influence of the fuel thermal expansion effect during the rod ejection problems.