• 제목/요약/키워드: Multi-coupled

검색결과 733건 처리시간 0.023초

독립적 하부 시스템에 의한 다분야 통합 최적설계 (Mathematical Validation of Multidisciplinary Design Optimization Based on Independent Subspaces)

  • 신문균;박경진
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.109-117
    • /
    • 2004
  • Optimization has been successfully applied to systems with a single discipline. As many disciplines are involved in coupled fashion, MDO (multidisciplinary design optimization) technology has been developed. MDO algorithms are trying to solve the coupled aspects generated from interdisciplinary relationship. In a general MDO algorithms, a large design problem is decomposed into small ones which can be easily solved. Although various methods have been proposed for MDO, the research is still in the early stage. This research proposes a new MDO method which is named as MDOIS (Multidisciplinary Design Optimization Based on Independent Subspaces). Many real engineering problems consist of physically separate components and they can be independently designed. The inter-relationship occurs through coupled physics. MDOIS is developed for such problems. In MDOIS, a large system is decomposed into small subsystems. The coupled aspects are solved via system analysis which solves the coupled physics. The algorithm is mathematically validated by showing that the solution satisfies the Karush-Kuhn-Tucker condition.

Flutter study of flapwise bend-twist coupled composite wind turbine blades

  • Farsadi, Touraj;Kayran, Altan
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.267-281
    • /
    • 2021
  • Bending-twisting coupling induced in big composite wind turbine blades is one of the passive control mechanisms which is exploited to mitigate loads incurred due to deformation of the blades. In the present study, flutter characteristics of bend-twist coupled blades, designed for load alleviation in wind turbine systems, are investigated by time-domain analysis. For this purpose, a baseline full GFRP blade, a bend-twist coupled full GFRP blade, and a hybrid GFRP and CFRP bend-twist coupled blade is designed for load reduction purpose for a 5 MW wind turbine model that is set up in the wind turbine multi-body dynamic code PHATAS. For the study of flutter characteristics of the blades, an over-speed analysis of the wind turbine system is performed without using any blade control and applying slowly increasing wind velocity. A detailed procedure of obtaining the flutter wind and rotational speeds from the time responses of the rotational speed of the rotor, flapwise and torsional deformation of the blade tip, and angle of attack and lift coefficient of the tip section of the blade is explained. Results show that flutter wind and rotational speeds of bend-twist coupled blades are lower than the flutter wind and rotational speeds of the baseline blade mainly due to the kinematic coupling between the bending and torsional deformation in bend-twist coupled blades.

Development of a Coupled Enzyme Assay Method for Microsomal Prostaglandin E Synthase Activity

  • Choi, Kyung-A;Park, Sung-Jun;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.384-388
    • /
    • 2010
  • Human microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the conversion of prostaglandin $H_2$ ($PGH_2$) into prostaglandin $E_2$ ($PGE_2$). To establish a stable and efficient method to assess the activity of mPGES-1, a coupled enzyme assay system using mPGES-1, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and phosphomolybdic acid (PMA) was developed. In this assay system, $PGH_2$ was converted to $PGE_2$ by mPGES-1, and then $PGE_2$ was further transformed to the 15-keto-$PGE_2$ by 15-PGDH accompanying the production of NADH, which was easily detected by fluorescence spectrometry in a multi-well plate format. During the reaction, spontaneous oxidation of $PGH_2$ was prevented by PMA. Using this novel assay, the $K_m$ value of mPGES-1 for $PGH_2$ and the $IC_{50}$ value of the previously characterized inhibitor, MK-886, were determined to be 0.150 mM and $2.8\;{\mu}M$, respectively, which were consistent with the previously reported values. In addition, low backgrounds were observed in the multi-wall plate screening of chemical compounds.

IDENTIFICATION OF THERMODYNAMIC PARAMETERS OF ARCTIC SEA ICE AND NUMERICAL SIMULATION

  • Xiw, Chao;Feng, Enmin;Li, Zhijun;Peng, Lu
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.519-530
    • /
    • 2008
  • This paper studies the multi-domain coupled system of one dimensional Arctic temperature field and establishes identification model about the thermodynamic parameters of sea ice (heat storage capacity, density and conductivity) by the so-called output least-square estimate according to the temperature data acquired by a monitor buoy installed in the Arctic ocean. By the optimal control theory, the existence and dependability of weak solution and the identifiability of identification model have been given. Moreover, necessary optimality condition is proposed. Furthermore, the optimal algorithm for the identification model is constructed. By using the optimal thermodynamic parameters of Arctic sea ice, the numerical simulation is implemented, and the numerical results of temperature distribution of Arctic sea ice are demonstrated.

  • PDF

Multi-pole Inductively Coupled Plasma(MICP)를 이용한 Via Contact 및 Deep Contact Etch 특성 연구 (Via Contact and Deep Contact Hole Etch Process Using MICP Etching System)

  • 설여송;김종천
    • 반도체디스플레이기술학회지
    • /
    • 제2권3호
    • /
    • pp.7-11
    • /
    • 2003
  • In this research, the etching characteristics of via contact and deep contact hole have been studied using multi-pole inductively coupled plasma(MICP) etching system. We investigated Plasma density of MICP source using the Langmuir probe and etching characteristics with RF frequency, wall temperature, chamber gap, and gas chemistry containing Carbon and Fluorine. As the etching time increases, formation of the polymer increases. To improve the polymer formation, we controlled the temperature of the reacting chamber, and we found that temperature of the chamber was very effective to decrease the polymer thickness. The deep contact etch profile and high selectivity(oxide to photoresist) have been achieved with the optimum mixed gas ratio containing C and F and the temperature control of the etching chamber.

  • PDF

Vibration Analysis of the Active Multi-Layer Beams by Using Spectrally Formulated Exact Natural Modes

  • Lee, Usik;Kim, Joohong;Andrew Y. T. Leung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.199-209
    • /
    • 2001
  • Modal analysis method (MAM) is introduced for the fully coupled structural dynamic problems. In this paper, the beam with active constrained layered damping (ACLD) treatment is considered as a representative problem. The ACLD beam consists of a viscoelastic layer that is sandwiched between the base beam structure and an active piezoelectric layer. The exact damped natural modes are spectrally formulated from a set of fully coupled dynamic equations of motion. The orthogonality property of the exact damped natural modes is then derived in a closed form to complete the modal analysis method. The accuracy of the present MAM is evaluated through some illustrative examples: the dynamic characteristics obtained by the present MAM are compared with the results by spectral element method (SEM) and finite element method (FEM). It is numerically proved that MAM solutions become identical to the accurate SEM solutions as the number of exact natural used in MAM is increased.

  • PDF

자장의 배열 및 형태가 유도결합형 플라즈마에 미치는 효과에 관한 연구 (A study on the effects of variously configured magnets on the characteristics of inductively coupled plasma)

  • 황순원;이영준;유지범;이재찬;염근영
    • 한국표면공학회지
    • /
    • 제32권4호
    • /
    • pp.513-520
    • /
    • 1999
  • In this study, we investigated the effects of variously configured magnets on the characteristics of the plasmas to enhance plasma uniformity and density of an inductively coupled plasma source. As the magnets, Helmholtz type axial electromagnets and various multi-dipole magnets types around the chamber wall were used. To characterize the plasma as a function of the combination of the magnets and magnetic field strengths, ion density, electron temperature, and plasma potential were measured using an electrostatic probe along the chamber diameter for Ar plasmas. The measured maximum ion densities were $8$\times$10^{ 11}$$cm^{-3}$ with 600W inductive power and at 5mTorr of operational pressure and the uniformity of ion density was less than 5.9% at 2mTorr of operational pressure. The combination of an optimized multi-dipole magnet type and an axial electromagnet showed the lowest electron temperature (3eV) and plasma potential ($34V{p}$ )

  • PDF

Self-Organization for Multi-Agent Groups

  • Kim, Dong-Hun
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.333-342
    • /
    • 2004
  • This paper presents a framework for the self-organization of swarm systems based on coupled nonlinear oscillators (CNOs). In this scheme, multiple agents in a swarm self-organize to flock and arrange themselves as a group using CNOs, which are able to keep a certain distance by the attractive and repulsive forces among different agents. A theoretical approach of flocking behavior by CNOs and a design guideline of CNO parameters are proposed. Finally, the formation scenario for cooperative multi-agent groups is investigated to demonstrate group behaviors such as aggregation, migration, homing and so on. The task for each group in this scenario is to perform a series of processes such as gathering into a whole group or splitting into two groups, and then to return to the base while avoiding collision with agents in different groups and maintaining the formation of each group.

Temperature effect on multi-ionic species diffusion in saturated concrete

  • Damrongwiriyanupap, Nattapong;Li, Linyuan;Limkatanyu, Suchart;Xi, Yunping
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.149-171
    • /
    • 2014
  • This study presents the mathematical model for predicting chloride penetration into saturated concrete under non-isothermal condition. The model considers not only diffusion mechanism but also migration process of chloride ions and other chemical species in concrete pore solution such as sodium, potassium, and hydroxyl ions. The coupled multi-ionic transport in concrete is described by the Nernst-Planck equation associated with electro-neutrality condition. The coupling parameter taken into account the effect of temperature on ion diffusion obtained from available test data is proposed and explicitly incorporated in the governing equations. The coupled transport equations are solved using the finite element method. The numerical results are validated with available experimental data and the comparison shows a good agreement.

고층건물 시공자동화를 위한 다중 클라이밍 유압로봇의 운동 동기제어 (Synchronous Motion Control of Multi-Climbing Hydraulic Robots for High-Rise Building Construction Automation)

  • 홍윤석;장효환
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.103-111
    • /
    • 2009
  • Multi-climbing hydraulic robots are used to lift construction factory (CF) synchronously for applications in the automation of a high-rise building construction. In this study, synchronous motion controller is proposed for the hydraulic robots, whose strategy is not only to make each robot follow the reference path basically by sliding-mode control, but also to synchronize motions of two adjacent cent robots consecutively by cross-coupled control technique. Simulations are performed by using SIMULINK for a system similar to a practical application that includes unbalance in CF and wind disturbance. The results show that the proposed controller significantly reduces synchronous errors, compared to the individual controller for each hydraulic robot.