• Title/Summary/Keyword: Multi-component reaction

Search Result 40, Processing Time 0.044 seconds

A Comparative Analysis on characteristics and Manufacture of Methane/Natural Gas Hydrates (메탄/천연가스 하이드레이트의 제조 및 특성 비교 분석)

  • Lee Young-Chul;Cho Byoung-Hak;Baek Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.32-43
    • /
    • 2003
  • As this paper is observed the phase equilibrium diagram of mono- (methane) and multi-component(natural gas) hydrates, and the hydrate growth behavior is analysed and compared by the experiments during the reaction. The difference of mono and multi-component hydrates is an induction delay time and a plateau region. And the concentration of component of gases is changed during the reaction in multi-component hydrates and the concentration of components is changed during the decomposition of hydrate according to each decomposing rates of gases. At 6 MPa, 276.65 K and 600 rpm, the induction delay time of multi-component hydrate formation is observed shorter than that of mono-component hydrate formation because the hydrate nuclei of gases except methane form faster than those of methane. And the plateau region of mono-component hydrate is observed distinctly at 0.055 mole of $CH_4$/mole of water and that of multi-component hydrate is observed at 0.04 mole of $CH_4$/mole of water.

  • PDF

Silica Gel-Supported Polyphosphoric Acid (PPA-SiO2) Catalyzed One-Pot Multi-Component Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and -thiones: An Efficient Method for the Biginelli Reaction

  • Zeinali-Dastmalbaf, Mohsen;Davoodnia, Abolghasem;Heravi, Majid M.;Tavakoli-Hoseini, Niloofar;Khojastehnezhad, Amir;Zamani, Hassan Ali
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.656-658
    • /
    • 2011
  • A green and efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and -thiones through one-pot three-component reaction of ethyl acetoacetate, an aryl aldehyde, and urea or thiourea in acetonitrile using silica gel-supported polyphosphoric acid (PPA-$SiO_2$) as catalyst is described. Compared to the classical Biginelli reaction conditions, the present methodology offers several advantages such as high yields, relatively short reaction times, mild reaction condition and a recyclable catalyst with a very easy work up.

Scolecite Catalyzed Facile and Efficient Synthesis of Polyhydroquinoline Derivatives through Hantzsch Multi-component Condensation

  • Gadekar, Lakshman S.;Katkar, Santosh S.;Mane, Shivshankar R.;Arbad, Balasaheb R.;Lande, Machhindra K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2532-2534
    • /
    • 2009
  • A facile and efficient synthetic route has been developed for the polyhydroquinoline via four component reactions of aldehydes, dimedone, ethyl acetoacetate and ammonium acetate in the presence of catalytic amount of scolecite in ethanol at 70 ${^{\circ}C}$ through Hantzsch reaction. This method gives remarkable advantages such as simple work-up procedure, environmentally friendly, inexpensive, non-toxic and recyclable catalyst, shorter reaction time along with excellent yields.

Dependence of an Interfacial Diels-Alder Reaction Kinetics on the Density of the Immobilized Dienophile: An Example of Phase-Separation

  • Min, Kyoung-Mi;Jung, Deok-Ho;Chae, Su-In;Kwon, Young-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1679-1684
    • /
    • 2011
  • Interfacial reactions kinetics often differ from kinetics of bulk reactions. Here, we describe how the density change of an immobilized reactant influences the kinetics of interfacial reactions. Self-assembled monolayers (SAMs) of alkanethiolates on gold were used as a model interface and the Diels-Alder reaction between immobilized quinones and soluble cyclopentadiene was used as a model reaction. The kinetic behavior was studied using varying concentrations of quinones. An unusual threshold density of quinones (${\Gamma}_c$ = 5.2-7.2%), at which the pseudo-first order rate constant started to vary as the reaction progressed, was observed. This unexpected kinetic behavior was attributed to the phase-separation phenomena of multi-component SAMs. Additional experiments using more phase-separated two-component SAMs supported this explanation by revealing a significant decrease in ${\Gamma}_c$ values. When the background hydroxyl group was replaced with carboxylic or phosphoric acid groups, ${\Gamma}_c$ was observed at below 1%. Also, more phase-separated thermodynamically controlled SAMs produced a lower critical density (3% < ${\Gamma}_c$ < 4.9%) than that of the less phaseseparated kinetically controlled SAMs (6.5% < ${\Gamma}_c$ < 8.9%).

Effect of Home-based Multi-Component Activity Program (Home-MAP) for mild Alzheimer's Disease Patients and Caregivers (경도 알츠하이머 치매환자와 보호자를 위한 가정기반 다요인 활동 프로그램(Home-based Multi-component Activities Program: Home-MAP)의 효과)

  • Hwang, Yun-Jung;Jeong, Won-Mee;Lee, Dong-Young
    • The Korean Journal of Health Service Management
    • /
    • v.9 no.3
    • /
    • pp.255-266
    • /
    • 2015
  • Objective : The aim of this study was to examine the effects of the Home-based Multi-component Activity Program (Home-MAP) for the maintenance activities of daily living (ADL) for patients with mild Alzheimer's disease (AD) and on caregiver burden for caregivers. Methods : Nine mild AD patients and family caregivers. The Home-MAP was performed 1d/wk, for a total of 10 times over 10 weeks. Results : After the 10 sessions, participants' motor and process skills scores on the AMPS were found to have significantly improved (p=.028 and p=.028, respectively). The BPSD frequency score on the R-MBPC was found to be significantly reduced (p=.017). The BPSD symptoms related to caregiver reaction score on the R-MBPC and distress score on the NPI-Q were significantly reduced (p=.039 and p=.018, respectively). Conclusions : The Home-MAP appears to have contributed to the improvement of patients' capabilities in performing in ADL, to a reduction of BPSD, and to a reduction of burden related to BPSD.

A Numerical Study on the Effectiveness Factor of Ni Catalyst Pellets for Steam-Methane Reforming (수증기-메탄개질용 Ni 촉매의 유용도에 관한 수치적 연구)

  • Choi, Chong-Gun;Nam, Jin-Hyun;Shin, Dong-Hoon;Jung, Tae-Yong;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.63-66
    • /
    • 2007
  • Reformers which produce hydrogen from natural gas are essential for the operation of residential PEM fuel cells. For this purpose, steam-methane reforming reactions with Ni catalysts is primarily utilized. Commercial Ni catalysts are generally made to have porous pellet shapes in which Ni catalyst particles are uniformly dispersed over Alumina support structures. This study numerically investigates the reduction of catalyst effectiveness due to the mass transport resistances posed by porous structures of spherical catalyst pellets. The multi-component diffusion through porous media and the accurate kinetics of reforming reaction is fully considered in the numerical model. The preliminary results on the variation of the effectiveness factor according to different operation conditions are presented, which is planned to be used to develop correlations in future studies.

  • PDF

Product Phase Control During Interdiffusion Reactions (상호 확산 반응 중의 생성상 제어)

  • Park, Joon-Sik;Kim, Ji-Hoon;Perepezko, John R.
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • Phase evolutions involving nucleation stages together with diffusional growth have been examined in order to provide a guideline for determining rate limiting stages during phase evolutions. In multiphase materials systems in coatings, composites or multilayered structures, diffusion treatments often result in the development of metastable/intermediate phases at the reaction interfaces. The development of metastable phases during solid state interdiffusion demonstrates that the nucleation reaction can be one controlling factor. Also, the concentration gradient and the relative magnitudes of the component diffusivities provide a basis for a phase selection and the application of a kinetic bias strategy in the phase selection. For multicomponent alloy systems, the identification of the operative diffusion pathway is central to control phase formation. Experimental access to the nucleation and growth stage is discussed in thin film multi layers and bulk samples.