• Title/Summary/Keyword: Multi-classification

Search Result 1,251, Processing Time 0.023 seconds

Physiological Responses-Based Emotion Recognition Using Multi-Class SVM with RBF Kernel (RBF 커널과 다중 클래스 SVM을 이용한 생리적 반응 기반 감정 인식 기술)

  • Vanny, Makara;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.364-371
    • /
    • 2013
  • Emotion Recognition is one of the important part to develop in human-human and human computer interaction. In this paper, we have focused on the performance of multi-class SVM (Support Vector Machine) with Gaussian RFB (Radial Basis function) kernel, which has been used to solve the problem of emotion recognition from physiological signals and to improve the accuracy of emotion recognition. The experimental paradigm for data acquisition, visual-stimuli of IAPS (International Affective Picture System) are used to induce emotional states, such as fear, disgust, joy, and neutral for each subject. The raw signals of acquisited data are splitted in the trial from each session to pre-process the data. The mean value and standard deviation are employed to extract the data for feature extraction and preparing in the next step of classification. The experimental results are proving that the proposed approach of multi-class SVM with Gaussian RBF kernel with OVO (One-Versus-One) method provided the successful performance, accuracies of classification, which has been performed over these four emotions.

Process Design of Multi-Stage Shape Drawing Process for Cross Roller Guide (크로스 롤러 가이드 다단 형상인발 공정설계에 관한 연구)

  • Lee, Sang-Kon;Lee, Jae-Eun;Lee, Tae-Kyu;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.124-130
    • /
    • 2009
  • In the multi-stage shape drawing process, the most important aspect for the economy is the correct design of the various drawing stage. For most of the products commonly available round or square materials can be used as initial material. However, special products should be pre-rolled. This study proposes a process design method of multi-stage shape drawing process for producing cross roller guide. Firstly, a standard classification of shape drawing process is suggested based on the requirement of pre-rolling process. And a design method is proposed to design the intermediate die shape. The process design method is applied to design the multi-stage shape drawing process for producing cross roller guide. Finally, the effectiveness of the proposed design method is verified by FE-analysis and shape drawing experiment.

Automated Prostate Cancer Detection on Multi-parametric MR imaging via Texture Analysis (다중 파라메터 MR 영상에서 텍스처 분석을 통한 자동 전립선암 검출)

  • Kim, YoungGi;Jung, Julip;Hong, Helen;Hwang, Sung Il
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.736-746
    • /
    • 2016
  • In this paper, we propose an automatic prostate cancer detection method using position, signal intensity and texture feature based on SVM in multi-parametric MR images. First, to align the prostate on DWI and ADC map to T2wMR, the transformation parameters of DWI are estimated by normalized mutual information-based rigid registration. Then, to normalize the signal intensity range among inter-patient images, histogram stretching is performed. Second, to detect prostate cancer areas in T2wMR, SVM classification with position, signal intensity and texture features was performed on T2wMR, DWI and ADC map. Our feature classification using multi-parametric MR imaging can improve the prostate cancer detection rate on T2wMR.

Deep Learning based Emotion Classification using Multi Modal Bio-signals (다중 모달 생체신호를 이용한 딥러닝 기반 감정 분류)

  • Lee, JeeEun;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.146-154
    • /
    • 2020
  • Negative emotion causes stress and lack of attention concentration. The classification of negative emotion is important to recognize risk factors. To classify emotion status, various methods such as questionnaires and interview are used and it could be changed by personal thinking. To solve the problem, we acquire multi modal bio-signals such as electrocardiogram (ECG), skin temperature (ST), galvanic skin response (GSR) and extract features. The neural network (NN), the deep neural network (DNN), and the deep belief network (DBN) is designed using the multi modal bio-signals to analyze emotion status. As a result, the DBN based on features extracted from ECG, ST and GSR shows the highest accuracy (93.8%). It is 5.7% higher than compared to the NN and 1.4% higher than compared to the DNN. It shows 12.2% higher accuracy than using only single bio-signal (GSR). The multi modal bio-signal acquisition and the deep learning classifier play an important role to classify emotion.

Artificial Neural Network for Quantitative Posture Classification in Thai Sign Language Translation System

  • Wasanapongpan, Kumphol;Chotikakamthorn, Nopporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1319-1323
    • /
    • 2004
  • In this paper, a problem of Thai sign language recognition using a neural network is considered. The paper addresses the problem in classifying certain signs conveying quantitative meaning, e.g., large or small. By treating those signs corresponding to different quantities as derived from different classes, the recognition error rate of the standard multi-layer Perceptron increases if the precision in recognizing different quantities is increased. This is due the fact that, to increase the quantitative recognition precision of those signs, the number of (increasingly similar) classes must also be increased. This leads to an increase in false classification. The problem is due to misinterpreting the amount of quantity the quantitative signs convey. In this paper, instead of treating those signs conveying quantitative attribute of the same quantity type (such as 'size' or 'amount') as derived from different classes, here they are considered instances of the same class. Those signs of the same quantity type are then further divided into different subclasses according to the level of quantity each sign is associated with. By using this two-level classification, false classification among main gesture classes is made independent to the level of precision needed in recognizing different quantitative levels. Moreover, precision of quantitative level classification can be made higher during the recognition phase, as compared to that used in the training phase. A standard multi-layer Perceptron with a back propagation learning algorithm was adapted in the study to implement this two-level classification of quantitative gesture signs. Experimental results obtained using an electronic glove measurement of hand postures are included.

  • PDF

An Empirical Study on Discrimination of Image Algorithm for Improving the Accuracy of Forest Type Classification -Case of Gyeongju Area Using KOMPSAT-MSC Image Data- (임상 분류 정확도 향상을 위한 영상 알고리즘 변별력 실증 연구 -KOMPSAT-MSC를 이용한 경주지역을 대상으로-)

  • Jo, Yun-Won;Kim, Sung-Jae;Jo, Myung-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.55-60
    • /
    • 2009
  • By applying NDVI(Normalized Difference Vegetation Index) and TCT(Tasseled-Cap Transformation) image algorithm on the basis of KOMSAP-2 MSC(Multi Spectral Camera) image(Jun. 12, 2007) for Naenam-myeon, Gyeongju city in this study, DN distribution map was drawn up. Discrimination analysis of image algorithm for the accuracy improvement of forest type classification was conducted through the comparative analysis between the distribution maps of NDVI and TCT DN, and forest field surveying data, and finally, the accuracy of the forest type classification was verified through the overlay analysis with the forest field surveying data. Through this study, it is thought that low cost and high efficiency will be able to be expected in the process of the examination for the automation practicality of the forest type classification and of the production of the accurate forest type classification map by using KOMPSAT-2 MSC image.

  • PDF

Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type (결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류)

  • Kim, Yang-Seok;Lee, Do-Hwan;Kim, Seong-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1681-1689
    • /
    • 2010
  • Several studies on the use of Support Vector Machines (SVMs) for diagnosing rotating machinery have been successfully carried out, but the fault classification depends on the input features as well as a multi-classification scheme, binary optimizer, kernel function, and the parameter to be used in the kernel function. Most of the published papers on multiclass SVM applications report the use of the same features to classify the faults. In this study, simple statistical features are determined on the basis of time domain vibration signals for various fault conditions, and the optimal features for each fault condition are selected. Then, the optimal features are used in the SVM training and in the classification of each fault condition. Simulation results using experimental data show that the results of the proposed stepwise classification approach with a relatively short training time are comparable to those for a single multi-class SVM.

The Design and Implement of Microarry Data Classification Model for Tumor Classification (종양 분류를 위한 마이크로어레이 데이터 분류 모델 설계와 구현)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1924-1929
    • /
    • 2007
  • Nowadays, a lot of related data obtained from these research could be given a new present meaning to accomplish the original purpose of the whole research as a human project. The method of tumor classification based on microarray could contribute to being accurate tumor classification by finding differently expressing gene pattern statistically according to a tumor type. Therefore, the process to select a closely related informative gene with a particular tumor classification to classify tumor using present microarray technology with effect is essential. In this thesis, we used cDNA microarrays of 3840 genes obtained from neuronal differentiation experiment of cortical stem cells on white mouse with cancer, constructed accurate tumor classification model by extracting informative gene list through normalization separately and then did performance estimation by analyzing and comparing each of the experiment results. Result classifying Multi-Perceptron classifier for selected genes using Pearson correlation coefficient represented the accuracy of 95.6%.