1 |
G.Y. Liu and M. Hao, "Emotion Recognition of Physiological Signals based on Adaptive Hierarchical Genetic Algorithm," Proceeding of 2009 World Resources Institute World Congress on Computer Science and Information Engineering, pp. 670-674, 2009.
|
2 |
C. Maaoui and A. Pruski, "Emotion Recognition through Physiological Signals for Humanmachine Communication," Cutting Edge Robotics 2010, IntechOpen, London, 2010.
|
3 |
C.E. Izard, "Emotion Theory and Research: Highlights, Unanswered Questions, and Emerging Issues," Annual Review of Psychology, Vol. 60, pp. 1-25, 2009.
DOI
|
4 |
J. Zhang, M. Chen, S. Hu, Y. Cao, and R. Kozma, "PNN for EEG-based Emotion Recognition," Proceeding of 2016 IEEE International Conference on Systems, Man, and Cybernetics, pp. 002319-002323, 2016.
|
5 |
L. Mirmohamadsadeghi, A. Yazdani, and J.M. Vesin, "Using Cardio-respiratory Signals to Recognize Emotions Elicited by Watching Music Video Clips," Proceeding of 2016 IEEE 18th International Workshop on Multimedia Signal Processing, pp. 1-5, 2016.
|
6 |
B. Appelhans and L. Luecken, "Heart Rate Variability as an Index of Regulated Emotional Responding," Review of General Psychology, Vol. 10, No. 3, pp. 229-240, 2006.
DOI
|
7 |
U. Acharya, Rajendra, K.P. Joseph, N. Kannathal, L.C. Min, and J.S. Suri, Heart Rate Variability, Advances in Cardiac Signal Processing, Springer, Berlin, Heidelberg, pp. 121-165, 2007.
|
8 |
J.E. Lee and S.K. Yoo, "Correlation Analysis of Electrocardiogram Signal according to Sleep Stage," Journal of Korea Multimedia Society, Vol. 21, No. 12, pp. 1370-1378, 2018.
DOI
|
9 |
J. Zhai and A. Barreto, "Stress Detection in Computer Users based on Digital Signal Processing of Noninvasive Physiological Variables," Proceeding of 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1355-1358, 2006.
|
10 |
K.C. Berridge, Pleasure, Pain, Desire, and Dread: Hidden Core Processes of Emotion, Well-Being: The Foundations of Hedonic Psychology, Washington, DC, 1999.
|
11 |
M. Swangnetr and D.B. Kaber, "Emotional State Classification in Patient-robot Interaction using Wavelet Analysis and Statisticsbased Feature Selection," IEEE Transactions on Human-Machine Systems, Vol. 43, No. 1, pp. 63-75, 2013.
DOI
|
12 |
D.R. Bach and K.J. Friston, "Model-based Analysis of Skin Conductance Responses: Towards Causal Models in Psychophysiology," Psychophysiology, Vol. 50, No. 1, pp. 15-22, 2013.
DOI
|
13 |
D.M. Shin, D. Shin, and D.K. Shin, "Development of Emotion Recognition Interface using Complex EEG/ECG Bio- signal for Interactive Contents," Multimedia Tools and Applications, Vol. 76, No. 9, pp. 11449-11470, 2017.
DOI
|
14 |
S.E. Kahou, C. Pal, X. Bouthillier, P. Froumenty, C. Gulcehre, R. Memisevic, et al., "Combining Modality Specific Deep Neural Networks for Emotion Recognition in Video," Proceedings of the 15th ACM on International Conference on Multimodal Interaction, 2013.
|
15 |
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Massachusetts, 2016.
|
16 |
H. Chen and A.F. Murray, "Continuous Restricted Boltzmann Machine with an Implementable Training Algorithm," IEEE Proceedings-Vision, Image and Signal Processing, Vol. 150, No. 3, pp. 153-158, 2003.
DOI
|
17 |
G.E. Hinton, S. Osindero, and Y.W. Teh, "A Fast Learning Algorithm for Deep Belief Nets," Neural Computation, Vol. 18, No. 7, pp. 1527-1554, 2006.
DOI
|