• Title/Summary/Keyword: Multi-channel Communication

Search Result 803, Processing Time 0.021 seconds

Design Philosophy of MIMO OFDM system for Underwater Communication (수중 통신 환경을 위한 MIMO-OFDM 시스템 설계)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Byun, Sung-Hun;Kim, Sea-Moon;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2011
  • In this paper, we first analyze the differences of underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) systems and conventional terrestrial OFDM system, and give a simple introduction of the backgrounds. By considering the real UWA channel environments, the measured channel data is used to generate the UWA channel model and calculate the relative parameters for underwater OFDM systems. Practical least square (LS) based channel estimation with linear interpolation are adopted to obtain the channel state information (CSI) at receiver side. As multi-input multi-output (MIMO) processing techniques, Alamouti code is implemented and evaluated to perform for space time block coding (STBC) and space frequency block coding (SFBC) for UWA OFDM systems with the MIMO configuration of $2{\times}1$, at the same time, $1{\times}2$ maximum ratio combining (MRC) is performed for the purpose of comparison. The simulation results show that, with perfect channel estimation, SFBC failed to work duo to the serious frequency selectivity of UWA channel environments. When the practical channel estimation is applied, in the case of STBC, the proposed 4-column pilot pattern gives better performance about 7dB than SISO system.

The design of filters for multi-channel cardiac activation main amplifier (다중 채널 심장전기도 주 증폭기를 위한 필터 설계)

  • Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.180-184
    • /
    • 2010
  • In this paper, the filter design and simulation are performed to construct the multi-channel cardiac activation main amplifier. The main amplifier consists of sample and holder, variable high pass filter, notch filter, variable low pass filter. The general 64 channel configuration is expanded into 128 channels to enhance the spatial resolution and the filter is designed for 128 channels cardiac activation main amplifier.

A Study of Power Line Network Description Method for Multi path Analysis (다중경로 분석을 위한 전력선 네트워크 기술 방법에 관한 연구)

  • Oh, Hui-Myoung;Choi, Sung-Soo;Lee, Won-Tae;Kim, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2986-2988
    • /
    • 2005
  • To improve the reliability of power-line communication systems, the measurement and analysis has been proceeded in many power-line channel environments. In spite of the wired channel, power line channel has many multi-paths that are changing with load-variation, line-interconnection, impedance mismatching and so on. We accordingly need an analysis method based on the multi-path channel impulse response. Recently, a method to describe the homogeneous Power-line network has been published[1]. In this paper the modified method that can describe both the homogeneous and non -homogeneous power-line network has presented.

  • PDF

The Softest handoff Design using iterative decoding (Turbo Coding)

  • Yi, Byung-K.;Kim, Sang-G.;Picknoltz, Raymond-L.
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.76-84
    • /
    • 2000
  • Communication systems, including cell-based mobile communication systems, multiple satellite communication systems of multi-beam satellite systems, require reliable handoff methods between cell-to-cell, satellite-to-satellite of beam-to-team, respectively. Recent measurement of a CDMA cellular system indicates that the system is in handoff at about 35% to 70% of an average call period. Therefore, system reliability during handoff is one of the major system performance parameters and eventually becomes a factor in the overall system capacity. This paper presents novel and improved techniques for handoff in cellular communications, multi-beam and multi-satellite systems that require handoff during a session. this new handoff system combines the soft handoff mechanism currently implemented in the IS-95 CDMA with code and packet diversity combining techniques and an iterative decoding algorithm (Turbo Coding). the Turbo code introduced by Berrou et all. has been demonstrated its remarkable performance achieving the near Shannon channel capacity [1]. Recently. Turbo codes have been adapted as the coding scheme for the data transmission of the third generation international cellular communication standards : UTRA and CDMA 2000. Our proposed encoder and decoder schemes modified from the original Turbo code is suitable for the code and packet diversity combining techniques. this proposed system provides not only an unprecedented coding gain from the Turbo code and it iterative decoding, but also gain induced by the code and packet diversity combining technique which is similar to the hybrid Type II ARQ. We demonstrate performance improvements in AWGN channel and Rayleigh fading channel with perfect channel state information (CSI) through simulations for at low signal to noise ratio and analysis using exact upper bounding techniques for medium to high signal to noise ratio.

  • PDF

A Study of Collision Avoidance Algorithm Based on Multi-Beacon in the Vehicular Ad-hoc Network (VANET 환경에서 멀티 비콘을 적용한 충돌 회피 알고리즘에 관한 연구)

  • Kim, Jae-Wan;Eom, Doo-Seop
    • Journal of Information Technology Services
    • /
    • v.11 no.4
    • /
    • pp.195-213
    • /
    • 2012
  • In ubiquitous environments, the Intelligent Transportation System (ITS) protocol is a typical service used to improve the quality of life for humans. The Vehicular Ad-hoc Network (VANET) protocol, a part of ITS, needs further study with regards to its support for high reliability, high speed mobility, data transmission efficiency, and so on. The IEEE 802.11 standard provides a high data rate channel, but it was designed for peer-to-peer network protocols. IEEE 802.11p also provides a high data rate channel, however, it only facilitates communication between roadside and on-board equipment. A VANET has characteristics that enable its topology to change rapidly; it can also be expanded to a multi-hop range network during communication. Therefore, the VANET protocol needs a way to infer the current topology information relating to VANET equipped vehicles. In this paper, we present the Multi-Beacon MAC Protocol, and propose a method to resolve the problem of beacon collisions in VANET through the use of this Multi-Beacon MAC protocol. Evaluation of the performance of Multi-Beacon MAC protocol by means of both mathematical analyses and simulation experiments indicate that the proposed method can effectively reduce beacon collisions and improve the throughput and the delay between vehicles in VANET systems.

Channel Estimation Based on LMS Algorithm for MIMO-OFDM System (MIMO-OFDM을 위한 LMS 알고리즘 기반의 채널추정)

  • Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1455-1461
    • /
    • 2012
  • MIMO-OFDM which is one of core techniques for the high-speed mobile communication system requires the efficient channel estimation method with low estimation error and computational complexity, for accurately receiving data. In this paper, we propose a channel estimation algorithm with low channel estimation error comparing with LS which is primarily employed to the MIMO-OFDM system, and with low computational complexity comparing with MMSE. The proposed algorithm estimates channel vectors based on the LMS adaptive algorithm in the time domain, and the estimated channel vector is sent to the detector after FFT. We also suggest a preamble architecture for the proposed MIMO-OFDM channel estimation algorithm. The computer simulation example is provided to illustrate the performance of the proposed algorithm.

The Implementation of The Multi-Subject, Multi-Channel Optical Telemetry System for Physiological Signals

  • Park, Cha-Hun;Park, Jong-Dae;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.448-454
    • /
    • 2000
  • This paper describes the implementation of a multi-subject, multi-channel optical telemetry system for the short range measurement of electrocardiograms (EKGs) a system which receives command signals and transmits physiological signals to the external system using LED (Light Emitting Diode) and PD (Photodiode). This system decreases the dependency of power supply voltage to the CMOS IC chips and a new enforced synchronization technique using infrared bi-directional communication has also been proposed. The telemetry IC with the size of $5.1{\times}5.1mm^2$ has the following functions: receiving of command signal, initialization of internal state of all functional blocks, decoding of subject selection signal, time division multiplexing of 4-channel modulated physiological signals, transmission of modulated signals to external system, and auto power down control.

  • PDF

Multi-objective Optimization of Channel Quality and Power Consumption in Visible Light Communication Systems (다목적함수 최적화기법을 이용한 가시광 무선통신시스템의 통신채널품질 및 전력소비 최적화 연구)

  • Dotronghop, Dotronghop;Hwang, Junho;Yoo, Myungsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.11-17
    • /
    • 2012
  • The VLC system undertakes both missions of illumination and wireless communication. It is difficult to design a VLC system with optimal performance due to the trade-offs between power consumption and channel quality. In this paper, the VLC system design problem is solved by using multi-objective optimization method. For optimization, the multi-objective function is formulated with respect to power consumption, received power, and SNR under the constraints on the system variables. Through the multi-objective optimization, it is possible to obtain the solutions that satisfies both minimum power consumption and maximum channel quality.

Capacity Increasement of Trellis Coded 16 QAM Multi-Carrier CDMA System due to SC/MRC Diversity in Multiuser Interference and Rician Fading Channel.

  • 노재성;강희조;김춘길;김언곤;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.362-374
    • /
    • 2000
  • In this paper, trellis coded 16 QAM Multi-Carrior CDMA system is proposed, Using the equivalent signal-to-noise plus interference Power ratio (SNIR) of Multi-Carrier CDMA system in the reverse link, capacity and BER performance of trellis coded 16 QAM Multi-Carrier CDMA system are analyzed taking into account the number of multi-carrier, the number of multiple access user, the number of SC/MRC diversity branch, and Rician fading parameter in multiuser interference and Rician fading channel. And the capacity and the BER performance of trellis coded 16 QAM Multi-Carrier CDMA system using selection combining (SC) and maximal ratio cabining (MRC) diversity are numerically compared. Obtained results show that the capacity of proposed system depends on the number of multi-carrier. ti is found that the trellis coded 16 QAM Multi-Carrier CDMA system with SC/MRC antenna diversity scheme is efficient to combat multipath fading and to increase the maximum number of users in high speed data communication. With the results of analysis. MRC diversity technique provides the performance fro high speed data communications. Finally, we present a numerical approach to derive the capacity and the BER performance and to find the maximum number of multiple access user for Multi-Carrier system in multiuser interference and Rician fading channel.

  • PDF

Compressed Channel Feedback for Correlated Massive MIMO Systems

  • Sim, Min Soo;Park, Jeonghun;Chae, Chan-Byoung;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • Massive multiple-input multiple-output (MIMO) is a promising approach for cellular communication due to its energy efficiency and high achievable data rate. These advantages, however, can be realized only when channel state information (CSI) is available at the transmitter. Since there are many antennas, CSI is too large to feed back without compression. To compress CSI, prior work has applied compressive sensing (CS) techniques and the fact that CSI can be sparsified. The adopted sparsifying bases fail, however, to reflect the spatial correlation and channel conditions or to be feasible in practice. In this paper, we propose a new sparsifying basis that reflects the long-term characteristics of the channel, and needs no change as long as the spatial correlation model does not change. We propose a new reconstruction algorithm for CS, and also suggest dimensionality reduction as a compression method. To feed back compressed CSI in practice, we propose a new codebook for the compressed channel quantization assuming no other-cell interference. Numerical results confirm that the proposed channel feedback mechanisms show better performance in point-to-point (single-user) and point-to-multi-point (multi-user) scenarios.