• Title/Summary/Keyword: Multi-camera

Search Result 879, Processing Time 0.028 seconds

INITIAL GEOMETRIC ACCURACY OF KOMPSAT-2 HIGH RESOLUTION IMAGE

  • Seo, Doo-Chun;Lim, Hyo-Suk;Shin, Ji-Hyeon;Kim, Moon-Gyu
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.780-783
    • /
    • 2006
  • The KOrea Multi-Purpose Satellite-2 (KOMPSAT-2) was launched in July 2006 and the main mission of the KOMPSAT-2 is a high resolution imaging for the cartography of Korea peninsula by utilizing Multi Spectral Camera (MSC) images. The camera resolutions are 1 m in panchromatic scene and 4 m in multi-spectral imaging. This paper provides an initial geometric accuracy assessment of the KOMPSAT-2 high resolution image without ground control points and briefly introduces the sensor model of KOMPSAT-2. Also investigated and evaluated the obtained 3-dimensional terrain information using the MSC pass image and scene images acquired from the KOMPSAT-2 satellite.

  • PDF

3D Calibration Method on Large-Scale Hull Pieces Profile Measurement using Multi-Slit Beams (선박용 곡판형상의 실시간 측정을 위한 다중 슬릿빔 보정법)

  • Kim, ByoungChang;Lee, Se-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.968-973
    • /
    • 2013
  • In the transportation industry, especially in the shipbuilding process, 3D surface measurement of large-scale hull pieces is needed for fabrication and assembly. We suggest an efficient method for checking the shape of curved plates under the forming operation with short time by measuring 3D profiles along the multi lines of the target surface. For accurate profile reconstruction, 2D camera calibration and 3D calibration using gauge blocks were performed. The evaluation test shows that the measurement accuracy is within the boundary of tolerance required in the shipbuilding process.

The Analysis on the relation between the Compression Method and the Performance of MSC(Multi-Spectral Camera) Image data

  • Yong, Sang-Soon;Choi, Myung-Jin;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.530-532
    • /
    • 2007
  • Multi-Spectral Camera(MSC) is a main payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). The compression method on KOMPSAT-2 MSC was selected and used to match EOS input rate and PDTS output data rate on MSC image data chain. At once the MSC performance was carefully handled to minimize any degradation so that it was analyzed and restored in KGS(KOMPSAT Ground Station) during LEOP and Cal./Val.(Calibration and Validation) phase. In this paper, on-orbit image data chain in MSC and image data processing on KGS including general MSC description is briefly described. The influences on image performance between on-board compression algorithms and between performance restoration methods in ground station are analyzed and discussed.

  • PDF

High speed seam tracking system using vision sensor with multi-line laser (다중 레이저 선을 이용한 비전 센서를 통한 고속 용접선 추적 시스템)

  • 성기은;이세헌
    • Proceedings of the KWS Conference
    • /
    • 2002.05a
    • /
    • pp.49-52
    • /
    • 2002
  • A vision sensor measure range data using laser light source, This sensor generally use patterned laser which shaped single line. But this vision sensor cannot satisfy new trend which needs faster and more precise processing. The sensor's sampling rate increases as reduced image processing time. However, the sampling rate can not over 30fps, because a camera has mechanical sampling limit. If we use multi line laser pattern, we will measure multi range data in one image. In the case of using same sampling rate camera, number of 2D range data profile in one second is directly proportional to laser line's number. For example, the vision sensor using 5 laser lines can sample 150 profiles per second in best condition.

  • PDF

High speed seam tracking using multi-line laser vision sensor (멀티 라인 레이저 비전 센서를 이용한 고속 용접선 추적 기술)

  • 성기은;이세헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.584-587
    • /
    • 2002
  • A vision sensor measure range data using laser light source. This sensor generally use patterned laser which shaped single line. But this vision sensor cannot satisfy new trend which needs laster and more precise processing. The sensor's sampling rate increases as reduced image processing time. However, the sampling rate can not over 30fps, because a camera has mechanical sampling limit. If we use multi line laser pattern, we will measure multi range data in one image. In the case of using same sampling rate camera, number of 2D range data profile in one second is directly proportional to laser line's number. For example, the vision sensor using 5 laser lines can sample 150 profiles per second in best condition.

  • PDF

Multi-task Architecture for Singe Image Dynamic Blur Restoration and Motion Estimation (단일 영상 비균일 블러 제거를 위한 다중 학습 구조)

  • Jung, Hyungjoo;Jang, Hyunsung;Ha, Namkoo;Yeon, Yoonmo;Kwon, Ku yong;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1149-1159
    • /
    • 2019
  • We present a novel deep learning architecture for obtaining a latent image from a single blurry image, which contains dynamic motion blurs through object/camera movements. The proposed architecture consists of two sub-modules: blur image restoration and optical flow estimation. The tasks are highly related in that object/camera movements make cause blurry artifacts, whereas they are estimated through optical flow. The ablation study demonstrates that training multi-task architecture simultaneously improves both tasks compared to handling them separately. Objective and subjective evaluations show that our method outperforms the state-of-the-arts deep learning based techniques.

Research for Calibration and Correction of Multi-Spectral Aerial Photographing System(PKNU 3) (다중분광 항공촬영 시스템(PKNU 3) 검정 및 보정에 관한 연구)

  • Lee, Eun Kyung;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.143-154
    • /
    • 2004
  • The researchers, who seek geological and environmental information, depend on the remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, the adverse weather conditions and the expensive equipment can restrict that the researcher can collect their data anywhere and any time. To allow for better flexibility, we have developed a compact, a multi-spectral automatic Aerial photographic system(PKNU 2). This system's Multi-spectral camera can catch the visible(RGB) and infrared(NIR) bands($3032{\times}2008$ pixels) image. Visible and infrared bands images were obtained from each camera respectively and produced Color-infrared composite images to be analyzed in the purpose of the environment monitor but that was not very good data. Moreover, it has a demerit that the stereoscopic overlap area is not satisfied with 60% due to the 12s storage time of each data, while it was possible that PKNU 2 system photographed photos of great capacity. Therefore, we have been developing the advanced PKNU 2(PKNU 3) that consists of color-infrared spectral camera can photograph the visible and near infrared bands data using one sensor at once, thermal infrared camera, two of 40 G computers to store images, and MPEG board to compress and transfer data to the computer at the real time and can attach and detach itself to a helicopter. Verification and calibration of each sensor(REDLAKE MS 4000, Raytheon IRPro) were conducted before we took the aerial photographs for obtaining more valuable data. Corrections for the spectral characteristics and radial lens distortions of sensor were carried out.

  • PDF

Scaling Attack Method for Misalignment Error of Camera-LiDAR Calibration Model (카메라-라이다 융합 모델의 오류 유발을 위한 스케일링 공격 방법)

  • Yi-ji Im;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1099-1110
    • /
    • 2023
  • The recognition system of autonomous driving and robot navigation performs vision work such as object recognition, tracking, and lane detection after multi-sensor fusion to improve performance. Currently, research on a deep learning model based on the fusion of a camera and a lidar sensor is being actively conducted. However, deep learning models are vulnerable to adversarial attacks through modulation of input data. Attacks on the existing multi-sensor-based autonomous driving recognition system are focused on inducing obstacle detection by lowering the confidence score of the object recognition model.However, there is a limitation that an attack is possible only in the target model. In the case of attacks on the sensor fusion stage, errors in vision work after fusion can be cascaded, and this risk needs to be considered. In addition, an attack on LIDAR's point cloud data, which is difficult to judge visually, makes it difficult to determine whether it is an attack. In this study, image scaling-based camera-lidar We propose an attack method that reduces the accuracy of LCCNet, a fusion model (camera-LiDAR calibration model). The proposed method is to perform a scaling attack on the point of the input lidar. As a result of conducting an attack performance experiment by size with a scaling algorithm, an average of more than 77% of fusion errors were caused.

A Face Tracking Algorithm for Multi-view Display System

  • Han, Chung-Shin;Go, Min Soo;Seo, Young-Ho;Kim, Dong-Wook;Yoo, Ji-Sang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • This paper proposes a face tracking algorithm for a viewpoint adaptive multi-view synthesis system. The original scene captured by a depth camera contains a texture image and 8 bit gray-scale depth map. From this original image, multi-view images that correspond to the viewer's position can be synthesized using geometrical transformations, such as rotation and translation. The proposed face tracking technique gives a motion parallax cue by different viewpoints and view angles. In the proposed algorithm, the viewer's dominant face, which is established initially from a camera, can be tracked using the statistical characteristics of face colors and deformable templates. As a result, a motion parallax cue can be provided by detecting the viewer's dominant face area and tracking it, even under a heterogeneous background, and synthesized sequences can be displayed successfully.

  • PDF

High-resolution Depth Generation using Multi-view Camera and Time-of-Flight Depth Camera (다시점 카메라와 깊이 카메라를 이용한 고화질 깊이 맵 제작 기술)

  • Kang, Yun-Suk;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.1-7
    • /
    • 2011
  • The depth camera measures range information of the scene in real time using Time-of-Flight (TOF) technology. Measured depth data is then regularized and provided as a depth image. This depth image is utilized with the stereo or multi-view image to generate high-resolution depth map of the scene. However, it is required to correct noise and distortion of TOF depth image due to the technical limitation of the TOF depth camera. The corrected depth image is combined with the color image in various methods, and then we obtain the high-resolution depth of the scene. In this paper, we introduce the principal and various techniques of sensor fusion for high-quality depth generation that uses multiple camera with depth cameras.