• 제목/요약/키워드: Multi-body contact

검색결과 76건 처리시간 0.03초

심해저 파이프라인과 굽힘 제한 장치의 다중물체 접촉 해석을 통한 구조 최적설계 (Multi-Body Contact Analysis and Structural Design Optimization of Bend Restrictors for Subsea Pipelines)

  • 노정민;하윤도
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.289-296
    • /
    • 2018
  • The offshore subsea platforms are connected to subsea pipelines to transport gas/oil from wells. The pipe is a multilayered structure of polymer and steel for compensating both flexibility and strength. The pipe also requires reinforcement structures to endure the extreme environmental conditions. A vertebrae structure of bend restrictors is one of the reinforcement structures installed to protect the subsea pipe from excessive bending deformations. In this study, structural behaviors of the subsea pipeline with bend restrictors are investigated by the multi-body contact analysis in Abaqus 6.14-2. Contact forces of each bend restrictor extracted from the multi-body contact analysis can be boundary conditions for topology design optimization in Altair Hyperworks 13.0 Hypermesh-Optistruct. Multiple design constraints are considered to obtain a manufacturable design with efficient material usage. Through the multi-body contact analysis with optimized bend restrictors, it is confirmed that the bending performance of the optimized design is enhanced.

와이퍼 블레이드의 누름압 해석 (Contact Pressure Analysis of a Windshield Wiperblade)

  • 이병수;신진용
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.51-57
    • /
    • 2006
  • The contact pressure distribution between a rubber wiper blade and a glass windshield is a major factor for wiping performance. A modeling and simulation method has been developed to forecast the contact pressure distribution on a wiper blade. For modeling multi-body dynamics of an wiper linkage system and flexible nature of wiper blade, ADAMS and ADAMS/flex are employed. A simulation study has been also conducted to obtain contact pressure distribution. Comparison between simulation and measurement is provided to ensure fidelity of the model and the simulation method.

A Flexible Multi-body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

  • Moon Il-Dong;Yoon Ho-Sang;Oh Chae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1638-1645
    • /
    • 2006
  • This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of $1{\sim}2mm/sec$ and frequency of 132 mm. First, the simulation is conducted with the same condition as the test. Then, the simulations are conducted with various amplitudes in a loaded state. The hysteretic diagram from the test is compared with the ones from the simulation for the validation of the reliability of the model. The dynamic stress analysis of the taper leaf spring is also conducted with the developed flexible multi-body dynamic model under a dynamic loading condition.

다족 보행 로봇 시스템의 이동성 및 민첩성 (Mobility and Agility of Multi-legged Walking Robot System)

  • 심형원;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1146-1154
    • /
    • 2008
  • This paper presents a method for the acceleration analysis of multi-legged walking robots in consideration of the frictional ground contact. This method is based on both unified dynamic equation for finding the acceleration of a robot's body and constraint equation for satisfying no-slip condition. After the dynamic equation representing relationship between actuator torques and body acceleration, is derived from the force and acceleration relationship between foot and body's gravity center, the constraint equation is formulated to reconfigure the maximum torque boundaries satisfying no-slip condition from given original actuator torque boundaries. From application of the reconfigured torques to the dynamic equation, interested acceleration boundaries are obtained. The approach based on above two equations, is adapted to the changes of degree-of-freedoms of legs as well as friction of ground. And the method provides the maximum translational and rotational acceleration boundaries of body's center that are achievable in every direction without occurring slipping at the contact points or saturating all actuators. Given the torque limits in infinite normsense, the resultant accelerations are derived as a polytope. From the proposed method, we obtained achievable acceleration boundaries of 4-legged and 6-legged walking robot system successfully.

다물체 동역학 해석을 위한 기어 강성 모듈 개발 (Development of Gear Stiffness Module for Multi-Body Dynamic Analysis on Gears)

  • 송진섭;이근호;박영준;배대성;이철호
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.130-136
    • /
    • 2012
  • Dynamic as well as static and geometric design parameters such as inertia, tooth profile, backlash and clearance can be directly considered via multi-body dynamic analysis along with contact analysis. However, it is time consuming to use finite elements for the consideration of the tooth flexibility in the multi-body dynamic analysis of gears. A computationally efficient procedure, so called, Gear Stiffness Module, is suggested to resolve this calculation time issue. The characteristics of gear tooth compliance are discussed and rotational stiffness element concept for the Gear Stiffness Module is presented. Transmission error analyses for a spur gear system are carried out to validate the reliability and efficiency of the module. Compared with the finite element model, the Gear Stiffness Module yields considerably similar results and takes only 3% of calculation time.

비선형 크립이론을 이용한 한국형 고속전철의 동특성 해석 (Analysis of Dynamic Behaviors for the Korea High Speed Train(KHST) by Using Non-Linear Creep Theory)

  • 박찬경;김석원;김회선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1093-1098
    • /
    • 2002
  • Dynamic behaviors of the Korean High-speed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multi-body dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheel-rail contact, the RecurDyn uses its built-in module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

  • PDF

다수 체인과 다중 접촉 성격을 지닌 발 메커니즘에 대한 충격량 흡수 기반 해석 (Analysis of Multi-Chained and Multiple Contact Characteristics of Foot Mechanisms in Aspect of Impulse Absorption)

  • 서종태;오세민;이병주
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.161-172
    • /
    • 2017
  • Foot mechanisms play the role of interface between the main body of robotic systems and the ground. Biomimetic design of the foot mechanism is proposed in the paper. Specifically, multi-chained and multiple contact characteristics of general foot mechanisms are analyzed and their advantages are highlighted in terms of impulse. Using Newton-Euler based closed-form external and internal impulse models, characteristics of multiple contact cases are investigated through landing simulation of an articulated leg model with three kinds of foot. It is shown that in comparison to single chain and less articulated linkage system, multi-chain and articulated linkage system has superior characteristic in terms of impulse absorption as well as stability after collision. The effectiveness of the simulation result is verified through comparison to the simulation result of a commercialized software.

고등어 자동 선별기 개발을 위한 고등어 선별 성능 분석 (Analysis of Mackerel Sorting Performance for Development of Automatic Mackerel Grader)

  • 전철웅;손정현;최명구
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.115-121
    • /
    • 2016
  • A mackerel grader is a machine for sorting mackerel according to size. In this study, the dynamic deflection and optimal sorting simulation of a mackerel grader was carried out by using multi-body dynamics. To analyze the dynamic deflection of the roller, RecurDyn, a multi-body dynamics analysis program, was used. The dynamic deflection of the roller pipe was analyzed according to the inclination of the roller pipe. When the inclination of the roller pipe was 30 degrees, the roller indicated the maximum deflection of about 6.3 mm at the center of the mass. To simulate the mackerel sorting, the mackerel grader machine was modeled, and the contact simulation between the mackerel model and the rotating roller pipe was carried out. When the inclination of the roller frame was 7 degrees, the mackerel grader indicated optimal sorting performance.

트랙터-트레일러형 차량 시스템의 주행 충격진동 특성에 관한 연구 (A study on the shock & vibration characteristics of a tractor-trailer type vehicle system running on the road)

  • 김종길
    • 한국군사과학기술학회지
    • /
    • 제4권1호
    • /
    • pp.13-19
    • /
    • 2001
  • It is known that displacements, velocities and accelerations of the tractor- trailer type vehicle system in shock & vibration analysis by the flexible-multi-body dynamics including the flexibility of structure are bigger and more repetitive than them by the rigid-multi-body dynamics, and it is necessary to prove above results by the experimental field test. Therefore, in this paper, theoretical analysis by the flexible-multi-body dynamics and experimental field test for a tractor-trailer type vehicle system are conducted and their results are compared with each other. Because of unexpected metal contact and impact in the air coupler part in the field test, some accelerations measured from the experimental field test are bigger than them analyzed from the theoretical analysis, but most accelerations are well coincide with each other in the amplitudes and trends. Thus more refined dynamic analytical models for some special type vehicle systems will be possible in the future.

  • PDF