• 제목/요약/키워드: Multi-body Dynamic Model

검색결과 172건 처리시간 0.024초

다물체 동역학 모델을 이용한 세탁기의 동적 해석 (Dynamic Analysis of a Washing Machine Using a Multi-body Dynamic Model)

  • 김태진;김병진;김승오;민제홍;정진태
    • 한국소음진동공학회논문집
    • /
    • 제22권1호
    • /
    • pp.88-93
    • /
    • 2012
  • In this study, a multi-body dynamic model is developed for a washing machine and the dynamic behaviors of the machine are investigated. The mechanical properties such as spring constants and damping factors are measured from vibrational experiments. With these experimentally obtained mechanical properties, a computer simulation model for the washing machine is established by using a commercial multi-body dynamics software DAFUL. In order to verify the developed simulation model, the dynamic responses computed from simulation are compared to the responses measured from vibration experiments. In addition, the effects of the stiffness and damping factors on the dynamic responses are also analyzed.

A Flexible Multi-body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

  • Moon Il-Dong;Yoon Ho-Sang;Oh Chae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1638-1645
    • /
    • 2006
  • This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of $1{\sim}2mm/sec$ and frequency of 132 mm. First, the simulation is conducted with the same condition as the test. Then, the simulations are conducted with various amplitudes in a loaded state. The hysteretic diagram from the test is compared with the ones from the simulation for the validation of the reliability of the model. The dynamic stress analysis of the taper leaf spring is also conducted with the developed flexible multi-body dynamic model under a dynamic loading condition.

연약 지반 주행차량의 동특성(Single-Body, Multi-Body) 비교 (Comparative Study of Dynamic Responses (Single-Body, Multi-Body)for Tracked Vehicles on Soft Soil)

  • 김형우;홍섭;최종수
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.135-140
    • /
    • 2003
  • This paper is handling about comparative study on dynamic responses of tracked vehicle on soft soil. Two models of tracked vehicle are used in this paper: a single-body model and a multi-body model. Two different methods for dynamic analysis of tracked vehicle are compared: single-body dynamic analysis and multi-body dynamic analysis. Traveling performances of two tracked vehicles are compared.

  • PDF

점착성 연약지반 주행차량의 동적거동 연구 (A Study on Dynamic Responses of Tracked Vehicle on Extremely Soft Cohesive Soil)

  • 김형우;홍섭;최종수
    • Ocean and Polar Research
    • /
    • 제26권2호
    • /
    • pp.323-332
    • /
    • 2004
  • This paper concerns about a study on dynamic responses of tracked vehicle on soft cohesive soil. For dynamic analyses of tracked vehicle, two different models were adopted, i.e. a single-body model and a multi-body model. The single-body vehicle model was assumed as a rigid body with 6-dof. The multi-body vehicle was modeled by using a commercial software, RecurDyn-LM. For the both models properties of cohesive soft soil were modeled by means of three relationships: pressure to sinkage, shear displacement to shear stress, and shear displacement to dynamic sinkage. Traveling performances of the two tracked vehicle models were compared through dynamic analyses in time domain.

다물체 동역학을 활용한 공작기계 구조물 이송을 위한 메카트로닉 해석 (Mechatronic Analysis for Feeding a Structure of a Machine Tool Using Multi-body Dynamics)

  • 최진우
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.691-696
    • /
    • 2012
  • In this study, a rigid multi-body dynamic model has been developed for mechatronic analysis to evaluate dynamic behavior of a machine tool. The development environment was the commercialized analysis tool, ADAMS, for rigid multi-body dynamic analysis. A simplified servo control logic was implemented in the tool using its functions in order to negate any external tool of control definition. The advantage of the internal implementation includes convenience of the analysis process by saving time and efforts. Application of this development to a machine tool helps to evaluate its dynamic behavior against feeding its component, to calculate the motor torque, and to optimize parameters of the control logic.

로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석 (Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility)

  • 김동만;김동현;김요한;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

대형 트레일러 차량의 범프 통과 시 유연다물체 동역학 해석 (Multi-flexible Body Dynamic Analysis of a Heavy Trailer Vehicle Passing a Bump)

  • 김정윤;김흥수;김진곤
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.40-45
    • /
    • 2009
  • This article deals with the transient analysis using multi-flexible body dynamics of a trailer vehicle, which is passing a bump on the flat road. In order to investigate the transient dynamic behavior of the trailer, we developed an equivalent finite element model for the trailer and a vehicle dynamic model for the truck using multi-body dynamics. The driving condition considered here is set as the trailer vehicle passes a bump on the flat road in 7km/h. And we investigate the time histories of vertical load and deflections on connecting points between the trailer and truck during the vehicle passes a bump. Due to the dynamic load resulted from the driving condition, additional stress concentrations are found in the trailer and the suspension connecting points between the trailer and rear axles along with kingpin.

  • PDF

다물체계 해석 방법을 이용한 동력전달계의 특성 해석 (Analysis on the Dynamic Characteristics of Power Transmission System Using Multi-body Dynamics)

  • 우민수;공진형;임원식
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.175-181
    • /
    • 2004
  • This paper presents the main method to analyze the dynamic characteristics of power transmission system using the multi-body dynamics, which is based on the concept of subsystem equation, subsystem assembling, and the self-determination technique for the system degree of freedom. We can model the mechanical components of power transmission system easily with the advantage of multi-body dynamics. Based on the theory, a dynamic simulation program was developed to analyze system performances, transient phenomena, and other dynamic problems. The driving performance of automatic transmission was simulated with using the multi-body dynamics and Newtonian method, and the validity of program was proved by comparing the two kinds of result.

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

유연체 동역학 모델과 전력전자 회로의 연동해석을 통한 단기통 왕복 압축기 거동해석에 관한 연구 (A Study on Dynamic Behaviour of Single Cylinder Reciprocating Compressor by Joint Simulation of Flexible Multi-body Dynamics and Electromagnetic Circuit)

  • 성원석;황원걸
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.28-38
    • /
    • 2012
  • The characteristics of vibration and noise of a compressor used for electric appliances have significant influence on the quality of the products. For improvement on the quality of electric appliances, investigations for understanding the dynamic behaviour of the compressor are essential. Since Virtual Lab for the dynamics model and MAXWELL for the electromagnetics model are separate software programs with no interface, the joint simulation of the models could not be performed. This study suggests a way to develop the compressor model capable of the joint simulation with MATLAB/SIMULINK linking a flexible multi-body dynamics model, a torque model, and an electricity control model. The compressor model is found to be able to perform I/O data transfer among the sub-models and joint simulation. The simulation results of the flexible body and rigid body dynamics models were compared to check availability of the joint simulation system. In addition, the simulated vibration and driving torque of the compressor mechanisms were compared with measurements. Through the simulations, the influence of springs and LDT on the dynamic behaviour of the compressor was examined. This study examines the influence of the dynamic behaviour of the compressor mechanisms through joint simulation of the flexible multi-body dynamics model and electromagnetic circuit allows analysis.