• Title/Summary/Keyword: Multi-band network

Search Result 124, Processing Time 0.026 seconds

Detection of short-term flux variability and intraday variability in polarized emission at millimeter-wavelength from S5 0716+714

  • Lee, Jeewon;Sohn, Bong Won;Byun, Do-Young;Lee, Jeong Ae;Lee, Sang Sung;Kang, Sincheol;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.33.1-33.1
    • /
    • 2016
  • We report detection of short-term flux variability in multi-epoch observations and intraday variability in polarized emission at millimeter-wavelength from S5 0716+714 using Korean VLBI Network (KVN) radio telescopes. Over the whole observation epochs, the source shows significant inter-month variations at K- and Q-band with modulation indices of 19% at K-band and 36% at Q-band. In each epoch, the source shows monotonic flux increase in Epoch 1 and 3, and monotonic flux decrease in Epoch 2 and 4. We found an inverted spectrum with mean spectral indices of -0.57 in Epoch 1 and -0.15 in Epoch. On the contrary, we found relatively steep indices of 0.24 and 0.17 in Epoch 2 and Epoch 4, respectively. In the study of intraday variability of polarization, we found significant variations in the degree of linear polarization at 86 GHz, and in polarization angle at 43 and 86 GHz during ~10 h. The spectrum of the source is quite flat with spectral indices of -0.07 to 0.07 at 22-43 GHz and -0.23 to 0.04 at 43-86 GHz. The measured degree of the linear polarization ranges from 2.3% to 3.3 % at 22 GHz, from 0.9% to 2.2 % at 43 GHz and from 0.4 % to 4.0 % at 86 GHz, yielding prominent variations at 86 GHz over 4-5 h. The linear polarization angle is in the range of 4 to $12^{\circ}$ at 22 GHz, -39 to $81^{\circ}$ at 43 GHz, and 66 to 119 at 86 GHz with a maximum rotation of $110^{\circ}$ at 43 GHz over ~4 h. We estimated the Faraday rotation measures (RM) ranging from -9200 to 6300 rad m-2 between 22 and 43 GHz, and from -71000 to 7300 rad m-2 between 43 and 86 GHz, respectively. The frequency dependency of RM was investigated, yielding a mean power-law index, a, of 2.0. This implies that the polarized emission from S5 0716+714 at 22-86 GHz moves through a Faraday screen in or near the jet of the source.

  • PDF

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.

Outage Probability and Throughput Management Using CoMP under the Coexistence of PS-LTE and LTE-R Networks (안전망과 철도망 공존환경에서 협력통신을 이용한 아웃티지 및 수율 관리)

  • Lim, WonHo;Jeong, HyoungChan;Ahmad, Ishtiaq;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • In the Republic of Korea, the LTE-based public safety (PS-LTE) network is being built for the 700 MHz frequency band. However, the same bands are also assigned to the LTE-based high-speed railway (LTE-R) network. Therefore, it is essential to utilize the co-channel interference management schemes for the coexistence of two LTE networks in order to increase the system throughput and to reduce the user outage probability. In this paper, we focus on the downlink (DL) system for the coexistence of PS-LTE and LTE-R networks by considering non radio access network (RAN) sharing and LTE-R RAN sharing by PS-LTE users (UEs) to analyze the UE throughput. Moreover, we also utilize the cooperative communications schemes, such as coordinated multipoint (CoMP) for the coexistence of PS-LTE and LTE-R networks in order to reduce the UE outage probability. We categorize the coexistence of PS-LTE and LTE-R networks into four different scenarios, and evaluate the performance of each scenario by the important performance indexes, such as UE average throughput and UE outage probability.

Packet Interference and Aggregated Throughput of Bluetooth Piconets Using an Adaptive Frequency Hopping in Rician Fading Channels (라이시안 페이딩 채널에서 AFH알고리즘을 사용하는 블루투스 피코넷의 패킷 간섭과 통합 처리량 분석)

  • Kim, Seung-Yeon;Yang, Sung-Hyun;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper we analyze the packet interference probability and the aggregated throughput of a WPAN in which a number of Bluetooth piconets share the ISM band with WLANS. Using an Adaptive Frequency Hopping algorithm, when the AFH is employed, the number of hops available to the Bluetooth piconets varies depending on the number of independent WLANs within the piconet's radio range. Using a packet collision model in a piconet cluster, we give an analysis of the packet interference probability and the aggregated throughput as a function of the available hops for the AFH algorithm. We also present an analytical model of packet interference with multi-path fading channel in a cluster of piconets. Through analysis, we obtain the packet collision probability and aggregated throughput assuming capture effect. Numerical examples are given to demonstrate the effect of various Parameters such as capture ratio, Rice factor and cluster size on the system performance.

DEEP-South: Photometric Study of NPA rotators 5247 Krolv and 14764 Kilauea

  • Lee, Hee-Jae;Kim, Myung-Jin;Moon, Hong-Kyu;Park, Jintae;Kim, Chun-Hwey;Choi, Young-Jun;Yim, Hong-Suh;Roh, Dong-Goo;Oh, Young-Seok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.55.2-56
    • /
    • 2016
  • The spin states of asteroids is regarded as an important clue to understand not only the physical property of an individual object but also the dynamical evolution of the of the population as a whole. Single asteroids can be broadly classified into two separate groups according to their rotational states; Principal Axis (PA) and Non-Principal Axis (NPA) rotators. To date, lightcurve observations have been carried out mostly for PA asteroids. However, discovery of NPA objects has recently been increased due to new observing techniques, and this is the reason why rotational properties of NPA rotators became an issue. As a DEEP-South pilot study for NPA, we selected two targets, 5247 Krolv (1982 UP6) and 14764 Kilauea (7072 P-L) considering their Principal Axis Rotation (PAR) code and visibility. Observations were made between Jan. and Feb. 2016 for 17 nights employing Korea Microlensing Telescope Network (KMTNet) 1.6 m telescopes installed at SSO and SAAO using DEEP-South TO (Target of Opportunity) mode. To obtain lightcurves, we conducted time-series photometry using Johnson-Cousins R-filter. Multi-band photometry was also made with BVRI filters at the same time, for taxonomy. Their preliminary lightcurves and approximate mineralogy will be presented.

  • PDF

A Study on the Quality-of-Experience in Mobile Video Adaptive Streaming under Active Bluetooth Connection (와이파이-블루투스 콤보칩 사용이 모바일 비디오 스트리밍 서비스에 미치는 영향 분석)

  • Lee, Jongho;Choi, Jaehyuk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.46-51
    • /
    • 2020
  • With Wi-Fi and Bluetooth connectivity becoming more common in today's handheld mobile devices, single-chip multi-radio combo-modules, which integrate two or more heterogeneous wireless radios on a single chip, are becoming more and more popular. The key requirement for combo solutions is that the quality of the user experience (QoE) must not be compromised by degrading connectivity performance. Therefore, characterizing and understanding the behaviour of combo-module is of vital importance to ensure this requirement in various environments. In this paper, we investigate the impact of the use of combo-modules on the performance of mobile video streaming over a Wi-Fi network. Our study reveals that the use of combo-modules incurs considerable side effects on QoE for mobile video streaming applications when the Wi-Fi and Bluetooth operate at the same time in the 2.4GHz ISM band. We reveal that rate-based adaptive algorithms, including the most popular adaptive bitrate streaming MPEG-DASH, is more severely affected by this phenomenon than buffer-based adaptive algorithms.

Performance Analysis of Drone-type Base Station on the mmWave According to Radio Resource Management Policy (무선자원 운용방안에 따른 밀리미터파 대역에서의 드론형 기지국 성능분석)

  • Jeong, Min-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.917-926
    • /
    • 2019
  • At present, TICN has been developed and distributed for military command control. TICN is known as the 3.5G mobile communication technology based on WiBro, which shows technical limitation in the field operation situation. Accordingly, the drone-type base station platform is attracting attention as an alternative to overcome technical limitations such as difficulty in securing communication LoS and limiting expeditious network configuration. In this study, we performed simulation performance evaluation of drone-type base station operation in 28 GHz that is considered most suitable for cellular communication within mmWave frequency band. Specifically, we analyzed the changes in throughput and fairness performance according to radio resource management policies such as frequency reuse and scheduling in multi-cell topology. Through this, we tried to provide insights on the operation philosophy on drone-type base station.

Optimizing Wavelet in Noise Canceler by Deep Learning Based on DWT (DWT 기반 딥러닝 잡음소거기에서 웨이블릿 최적화)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.113-118
    • /
    • 2024
  • In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.

Design of a Wide-Frequency-Range, Low-Power Transceiver with Automatic Impedance-Matching Calibration for TV-White-Space Application

  • Lee, DongSoo;Lee, Juri;Park, Hyung-Gu;Choi, JinWook;Park, SangHyeon;Kim, InSeong;Pu, YoungGun;Kim, JaeYoung;Hwang, Keum Cheol;Yang, Youngoo;Seo, Munkyo;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.126-142
    • /
    • 2016
  • This paper presents a wide-frequency-range, low-power transceiver with an automatic impedance-matching calibration for TV-white-space (TVWS) application. The wide-range automatic impedance matching calibration (AIMC) is proposed for the Drive Amplifier (DA) and LNA. The optimal $S_{22}$ and $S_{11}$ matching capacitances are selected in the DA and LNA, respectively. Also, the Single Pole Double Throw (SPDT) switch is integrated to share the antenna and matching network between the transmitter and receiver, thereby minimizing the systemic cost. An N-path filter is proposed to reject the large interferers in the TVWS frequency band. The current-driven mixer with a 25% duty LO generator is designed to achieve the high-gain and low-noise figures; also, the frequency synthesizer is designed to generate the wide-range LO signals, and it is used to implement the FSK modulation with a programmable loop bandwidth for multi-rate communication. The TVWS transceiver is implemented in $0.13{\mu}m$, 1-poly, 6-metal CMOS technology. The die area of the transceiver is $4mm{\times}3mm$. The power consumption levels of the transmitter and receiver are 64.35 mW and 39.8 mW, respectively, when the output-power level of the transmitter is +10 dBm at a supply voltage of 3.3 V. The phase noise of the PLL output at Band 2 is -128.3 dBc/Hz with a 1 MHz offset.

A Multi-Polarization Reconfigurable Microstrip Antenna Using PIN Diodes (PIN 다이오드를 이용한 다중 편파 재구성 마이크로스트립 안테나)

  • Song, Taeho;Lee, Youngki;Park, Daesung;Lee, Seokgon;Kim, Hyoungjoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.492-501
    • /
    • 2013
  • In this paper, a multi polarization reconfigurable microstrip antenna that can be used selectively for four polarizations(vertical polarization, horizontal polarization, right hand circular polarization, left hand circular polarization) at the S-band is presented. The proposed antenna consists of four PIN diodes and a microstrip patch with a cross slot and a circular slot and is fed by utiliting electromagnetic coupling between the microstrip patch and the feed line. The proposed antenna has a DC bias network to supply DC voltage to each PIN diode and the polarization can be determined by controlling the ON /OFF states of four PIN diodes. The fabricated antenna has a VSWR below 2 in the vertical polarization(3.17~3.21 GHz), the horizontal polarization(3.16~3.20 GHz), the left hand circular polarization (3.08~3.19 GHz), and the right hand circular polarization(3.10~3.2 GHz) frequency bands. The designed antenna has the cross polarization level higher than 20 dB, a gain over 5 dBi for the linear polarization states, and 3 dB axial ratio bandwidth wider than 50 MHz in the circular polarization states.