• Title/Summary/Keyword: Multi-aspect

Search Result 498, Processing Time 0.025 seconds

Process Map for Improving the Dimensional Accuracy in the Multi-Stage Drawing Process of Rectangular Bar with Various Aspect Ratio (다양한 종횡비의 직사각바 다단 인발공정에서 치수정도 향상을 위한 프로세스 맵)

  • Ko, P.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.154-159
    • /
    • 2018
  • In the rectangular bar multi-stage drawing process, the cross-section dimensional accuracy of the rectangular bar varies depending on the aspect ratio and process conditions. It is very important to predict the dimensional error of the cross-section occurring in the multi-stage drawing process according to the aspect ratio of the rectangular bar and the half die angle of each pass. In this study, a process map for improving the dimensional accuracy according to the aspect ratio was derived in the drawing process of a rectangular bar. FE-simulation of the multi-stage shape drawing process was carried out with four types of rectangular bar. The results of the FE-simulation were trained to the nonlinear relationship between the shape parameters using an Artificial Neural Network (ANN), and the process maps were derived from them. The optimum half die angles were determined from the process maps on the dimensional accuracy. The validity of the suggested process map for aspect ratios 1.25~2:1 were verified through FE-simulation and experimentation.

Multi-aspect Based Active Sonar Target Classification (다중 자세각 기반의 능동소나 표적 식별)

  • Seok, Jongwon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1775-1781
    • /
    • 2016
  • Generally, in the underwater target recognition, feature vectors are extracted from the target signal utilizing spatial information according to target shape/material characteristics. In addition, various signal processing techniques have been studied to extract feature vectors which are less sensitive to the location of the receiver. In this paper, we synthesized active echo signals using 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to echo signals to extract signal features. For the performance verification, classification experiments were performed using backpropagation and probabilistic neural network classifiers based on single aspect and multi-aspect method. As a result, we obtained a better recognition result using proposed feature extraction and multi-aspect based method.

an Automatic Transformation Process for Generating Multi-aspect Social IoT Ontology (다면적 소셜 IoT 도메인 온톨로지 생성을 위한 온톨로지 스키마 변환 프로세스)

  • Kim, SuKyung;Ahn, KeeHong;Kim, GunWoo
    • Smart Media Journal
    • /
    • v.3 no.3
    • /
    • pp.20-25
    • /
    • 2014
  • This research proposes a concept of multi-aspect Social IoT platform that enables human, machine and service to communicate smoothly among them, as well as a means of an automatic process for transforming exiting domain knowledge representation to generic ontology representation used in the platform. Current research focuses on building a machine-based service interoperability using sensor ontology and device ontology. However, to the best of our knowledge, the research on building a semantic model reflecting multi-aspects among human, machine, and service seems to be very insufficient. Therefor, in the research we first build a multi-aspect ontology schema to transform the representation used in each domain as a part of IoT into ontology-based representation, and then develop an automatic process of generating multi-aspect IoT ontology from the domain knowledge based on the schema.

Blank Design in Multi-Stage Rectangular Deep Drawing of Extreme Aspect Ratio (세장비가 큰 다단계 초정밀 사각형 디프드로잉을 위한 블랭크 설계)

  • 박철성;구태완;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • In this study, finite element analysis for multi-stage deep drawing process of rectangular configuration with extreme aspect ratio is carried out especially for the blank design. The analysis of rectangular deep drawing process with extreme aspect ratio is likewise very difficult with respect to the design process parameters including the intermediate die profile. In order to solve the difficulties, numerical approach using finite element method is performed in the present analysis and design. A series of experiments for multi-stage rectangular deep drawing process are conducted and the deformed configuration is investigated by comparing with the results of the finite element analysis. Additionally, to minimize amount of removal material after trimming process, finite element simulation is applied for the blank modification. The analysis incorporates brick elements for a rigid-plastic finite element method with an explicit time integration scheme using LS-DYNA3D.

  • PDF

A Study on the Injection Molding Technology by Micro Multi-Square Strucrure Mold (다중 미세 각주 구조물의 사출성형기술 연구)

  • 제태진;신보성;박순섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1061-1064
    • /
    • 1997
  • Micro injection molding technology is very important fiw mass product of micro structures or micro parts. And, it is so difficult that the molding technology of micro pole or thin wall(barrier rib) structures with high aspect ratio. In this stud). \vc intend to research on the basic technology of micro wall structure part:< with high aspect ratio by the inject~on moldins method. The mold for esperimenrs with micro multi-square structures was made by L, I(;A process. One square polc's size is 157 157pm. height 50011111. And the distance of each poles is 5011n1. 7'hus. molding products will be for~nctl like as the net structure with thin wall of about 50pn thickness.(aspect ratio 10) Ihrough the e~lxriment. \be obtained the prociuctr of micro multi-square slructure with bout 37.000 cell per a piece. 'Ihe micro injection molding process technolog for thin wall by multi-square structure mold was analy~cd.

  • PDF

A Comparative Study of Algorithms for Multi-Aspect Target Classifications (다중 각도 정보를 이용한 표적 구분 알고리즘 비교에 관한 연구)

  • 정호령;김경태;김효태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.579-589
    • /
    • 2004
  • The radar signals are generally very sensitive to relative orientations between radar and target. Thus, the performance of a target recognition system significantly deteriorates as the region of aspect angles becomes broader. To address this difficulty, in this paper, we propose a method based on the multi-aspect information in order to improve the classification capability ever for a wide angular region. First, range profiles are used to extract feature vectors based on the central moments and principal component analysis(PCA). Then, a classifier with the use of multi-aspect information is applied to them, yielding an additional improvement of target recognition capability. There are two different strategies among the classifiers that can fuse the information from multi-aspect radar signals: independent methodology and dependent methodology. In this study, the performances of the two strategies are compared within the frame work of target recognition. The radar cross section(RCS) data of six aircraft models measured at compact range of Pohang University of Science and Technology are used to demonstrate and compare the performances of the two strategies.

Semantic Integration of Databases Based on the Multi-Aspect Semantic Model (다중 측면 의미 모델에 기반한 데이터베이스의 의미 통합)

  • 이정욱;김중일;이종혁;백두권
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.283-285
    • /
    • 1998
  • 현재의 멀티데이터베이스 시스템에서 고려해야 할 중요한 문제중의 하나는 의미 이질성(semantic heterogeneity)을 식별하고 해결하는 것이다. 본 논문에서는 이를 위하여, 다중 측면 의미 모델(Multi-Aspect Semantic Model:MASM)을 제시하고 이에 기반한 의미 통합 방법을 제시한다. MASM은 의미 특징(semantic feature), 스키마 측면(schematic aspect), 명칭(name), 기능적 측면(functional aspect), 문맥(context) 등의 여러 요소들을 고려한 모델이며, 모든 요소 데이터베이스간에 공유되어야 하는 표준화된 지식 없이 객체간의 의미 유사성을 판단한다. 정보 통합에 필요한 모든 지식은 각 요소 데이터베이스에서 다른 요소 데이터베이스에 독립적으로 구축되며, 이를 통하여 융통성과 확장성을 갖는 멀티데이터베이스 시스템을 구축하는 토대를 마련한다.

Multi-stage Finite Element Inverse Analysis of elliptic Cup Drawing with large aspect ratio considering Intermediate Sliding Constraint Surface (중간 미끄럼 구속면을 고려한 세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석)

  • 김세호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.21-25
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of expense and computation time For multi-stage sheet metal forming processes numerical analysis is expense difficult to carry out the to its complexities and convergence problem. It also requires lots of computation time. For the analysis of elliptic cup with large aspect ratio intermediate sliding constraint surfaces are difficult to describe. in this paper multi-stage finite element inverse analysis is applied to multi-stage elliptic cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. To describe intermediate sliding constraint surfaces an analytic scheme is introduced to deal with merged-arc type sliding surfaces.

  • PDF

Analysis of Rectangular Cup Drawing Processes with Large Aspect Ratio Using Multi-Stage Finite Element Inverse Analysis (다단계 유한요소 역해석을 이용한 세장비가 큰 직사작컵 성형 공정의 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.389-395
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes with large aspect ratio, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem. as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

The Sensitivity Analysis of Thermal Expansion Breakage of Multi-layer Glazing in Building Envelope (건물 외피에 적용된 복층창의 열팽창 파손에 대한 민감도 분석 연구)

  • Yoon, Jong-Ho;Kim, Seung-Chul;Im, Kyung-Up;Oh, Myeong-Hwan
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.93-97
    • /
    • 2014
  • Curtain wall system of office buildings has recently become very common in Korea. As the multi-layer curtain glazing is exposed to outdoor environment, it is very subjected to direct environmental impact. Consequently, breakage and cracks of glazing due to heat expansion is frequently observed. This study explores various causes and aspects for destruction of multi-layer glazing. A sensitivity analysis was performed on the basis that thermal changes causes damage to the multi-layer glazing. Air temperature in air cavity within the multi-layer glazing was examined to find its effect on multi-layer glazing breakage. Analysis showed high deflection to depth ratio of 1:1.8 and that higher the aspect ratio, smaller is the deflection. Allowable pressure showed that the weakest value is for aspect ratio of 1:2.9. Sensitivity analysis by the area of the glazing showed that as area of glazing becomes higher, allowable pressure and deflection-depth ratio becomes smaller. For allowable pressure and allowable deflection-depth within air cavity, the glazing breakage occurred at least $107^{\circ}C$. The results from glazing breakage by thermal factor shows that it is hard to break the glazing with only an increase in air cavity temperature in multi-layer glazing applied in buildings.