• Title/Summary/Keyword: Multi-Unit PSA

Search Result 25, Processing Time 0.028 seconds

Performing a multi-unit level-3 PSA with MACCS

  • Bixler, Nathan E.;Kim, Sung-yeop
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.386-392
    • /
    • 2021
  • MACCS (MELCOR Accident Consequence Code System), WinMACCS, and MelMACCS now facilitate a multi-unit consequence analysis. MACCS evaluates the consequences of an atmospheric release of radioactive gases and aerosols into the atmosphere and is most commonly used to perform probabilistic safety assessments (PSAs) and related consequence analyses for nuclear power plants (NPPs). WinMACCS is a user-friendly preprocessor for MACCS. MelMACCS extracts source-term information from a MELCOR plot file. The current development can combine an arbitrary number of source terms, representing simultaneous releases from a multi-unit facility, into a single consequence analysis. The development supports different release signatures, fission product inventories, and accident initiation times for each unit. The treatment is completely general except that the model is currently limited to collocated units. A major practical consideration for performing a multi-unit PSA is that a comprehensive treatment for more than two units may involve an intractable number of combinations of source terms. This paper proposes and evaluates an approach for reducing the number of calculations to be tractable, even for sites with eight or ten units. The approximation error introduced by the approach is acceptable and is considerably less than other errors and uncertainties inherent in a Level 3 PSA.

A Study of System Analysis Method for Seismic PSA of Nuclear Power Plants (원자력발전소 지진 PSA의 계통분석방법 개선 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.159-166
    • /
    • 2019
  • The seismic PSA is to probabilistically estimate the potential damage that a large earthquake will cause to a nuclear power plant. It integrates the probabilistic seismic hazard analysis, seismic fragility analysis, and system analysis and is utilized to identify seismic vulnerability and improve seismic capacity of nuclear power plants. Recently, the seismic risk of domestic multi-unit nuclear power plant sites has been evaluated after the Great East Japan Earthquake and Gyeongju Earthquake in Korea. However, while the currently available methods for system analysis can derive basic required results of seismic PSA, they do not provide the detailed results required for the efficient improvement of seismic capacity. Therefore, for in-depth seismic risk evaluation, improved system analysis method for seismic PSA has become necessary. This study develops a system analysis method that is not only suitable for multi-unit seismic PSA but also provides risk information for the seismic capacity improvements. It will also contribute to the enhancement of the safety of nuclear power plants by identifying the seismic vulnerability using the detailed results of seismic PSA. In addition, this system analysis method can be applied to other external event PSAs, such as fire PSA and tsunami PSA, which require similar analysis.

A new methodology for modeling explicit seismic common cause failures for seismic multi-unit probabilistic safety assessment

  • Jung, Woo Sik;Hwang, Kevin;Park, Seong Kyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2238-2249
    • /
    • 2020
  • In a seismic PSA, dependency among seismic failures of components has not been explicitly modeled in the fault tree or event tree. This dependency is separately identified and assigned with numbers that range from zero to unity that reflect the level of the mutual correlation among seismic failures. Because of complexity and difficulty in calculating combination probabilities of correlated seismic failures in complex seismic event tree and fault tree, there has been a great need of development to explicitly model seismic correlation in terms of seismic common cause failures (CCFs). If seismic correlations are converted into seismic CCFs, it is possible to calculate an accurate value of a top event probability or frequency of a complex seismic fault tree by using the same procedure as for internal, fire, and flooding PSA. This study first proposes a methodology to explicitly model seismic dependency by converting correlated seismic failures into seismic CCFs. As a result, this methodology will allow systems analysts to quantify seismic risk as what they have done with the CCF method in internal, fire, and flooding PSA.

Evaluating the Application of Portable Safety Equipment in Nuclear Power Plants using Multi-unit PSA (다수기 PSA 기반 원자력 발전소 이동형 안전 설비 활용성 평가)

  • Jae Young Yoon;Ho-Gon Lim;Jong Woo Park
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.110-120
    • /
    • 2023
  • Following the Fukushima accident, portable equipment employed as accident mitigating systems have been installed and operated to reduce core damage and large early release frequencies. In addition, the establishment of an accident management strategy has gained importance. This study investigated the current status of portable equipment including the international portable equipment FLEX (diverse and flexible coping strategies), and domestic portable equipment multi-barrier accident coping strategy (MACST). Research on optimal utilization of MACST remains insufficient. As a preliminary study for establishing an optimal strategy, sensitivity studies were conducted to facilitate the priority of use on portable equipment, number of portable equipment, and dependency of operator actions based on a multi-unit probabilistic safety assessment model. The results revealed the conditions that reduced the multi-unit and site conditional core damage probabilities, indicating the optimal strategy of MACST. The results of this study can be used as a reference for establishing an optimal strategy that utilizes domestic safety equipment in the future.

Human and organizational factors for multi-unit probabilistic safety assessment: Identification and characterization for the Korean case

  • Arigi, Awwal Mohammed;Kim, Gangmin;Park, Jooyoung;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.104-115
    • /
    • 2019
  • Since the Fukushima Daiichi accident, there has been an emphasis on the risk resulting from multi-unit accidents. Human reliability analysis (HRA) is one of the important issues in multi-unit probabilistic safety assessment (MUPSA). Hence, there is a need to properly identify all the human and organizational factors relevant to a multi-unit incident scenario in a nuclear power plant (NPP). This study identifies and categorizes the human and organizational factors relevant to a multi-unit incident scenario of NPPs based on a review of relevant literature. These factors are then analyzed to ascertain all possible unit-to-unit interactions that need to be considered in the multi-unit HRA and the pattern of interactions. The human and organizational factors are classified into five categories: organization, work device, task, performance shaping factors, and environmental factors. The identification and classification of these factors will significantly contribute to the development of adequate strategies and guidelines for managing multi-unit accidents. This study is a necessary initial step in developing an effective HRA method for multiple NPP units in a site.

Study of combinations of site operating states for multi-unit PSA

  • Yoo, Heejong;Jin, Kyungho;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3247-3255
    • /
    • 2021
  • As Probabilistic Safety Assessments (PSAs) are thoroughly conducted for the Site Operating States (SOSs) for a single unit, multi-unit Probabilistic Safety Assessments (MUPSAs) are ongoing worldwide to address new technical challenges or issues. In South Korea, the determination of the site operating states for a single site requires a logical approach with reasonable assumptions due to the fact that there are 4-8 operating units for each site. This paper suggests a simulation model that gives a reasonable expectation of the site operation states using the Monte-Carlo method as a stochastic approach and deterministic aspects such as operational policies. Statistical hypothesis tests were conducted so that the reliance of the simulation results can be guaranteed. In this study, 7 units of the Kori site were analysed as a case study. The result shows that the fraction of full power for all 7 units is nearly 0.45. For situations when more than two units are not in operation, the highest fraction combination was obtained for Plant Operation State (POS) 8, which is the stage of inspection and repairment. By entering various site operation scenarios, the simulation model can be used for the analysis of other site operation states.

Multi-unit risk assessment of nuclear power plants: Current status and issues

  • Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1199-1209
    • /
    • 2018
  • After the Fukushima-Daiichi accident in 2011, the multi-unit risk, i.e., the risk due to several nuclear power plants (NPPs) in a site has become an important issue in several countries such as Korea, Canada, and China. However, the multi-unit risk has been discussed for a long time in the nuclear community before the Fukushima-Daiichi nuclear accident occurred. The regulatory authorities around the world and the international organizations had proposed requirements or guidelines to reduce the multi-unit risk. The concerns regarding the multi-unit risk can be summarized in the following three questions: How much the accident of an NPP in a site affects the safety of other NPPs in the same site? What is the total risk of a site with many NPPs? Will the risk of the simultaneous accidents at several NPPs in a site such as the Fukushima Daiichi accident be low enough? The multi-unit risk assessment (MURA) in an integrated framework is a practical approach to obtain the answers for the above questions. Even though there were few studies to assess the multi-unit risk before the Fukushima-Daiichi nuclear accident, there are still several issues to be resolved to perform the complete MURA. This article aims to provide an overview of the multi-unit risk issues and its assessment. We discuss the several critical issues in the current MURA to get useful insights regarding the multi-unit risk with the current state art of probabilistic safety assessment (PSA) technologies. Also, the qualitative answers for the above questions are addressed.

A Study on the Optimization of Offsite Consequence Analysis by Plume Segmentation and Multi-Threading (플룸분할 및 멀티스레딩을 통한 소외사고영향 분석시간 최적화 연구)

  • Seunghwan, Kim;Sung-yeop, Kim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.166-173
    • /
    • 2022
  • A variety of input parameters are taken into consideration while performing a Level 3 PSA. Some parameters related to plume segments, spatial grids, and particle size distribution have flexible input formats. Fine modeling performed by splitting a number of segments or grids may enhance the accuracy of analysis but is time-consuming. Analysis speed is highly important because a considerably large number of calculations is required to handle Level 2 PSA scenarios for a single-unit or multi-unit Level 3 PSA. This study developed a sensitivity analysis supporting interface called MACCSsense to compare the results of the trials of plume segmentation with the results of the base case to determine its impact (in terms of time and accuracy) and to support the development of a modeling approach, which saves calculation time and improves accuracy. MACCSense is an automation tool that uses a large amount of plume segmentation analysis results obtained from MUST Converter and Mr. Manager developed by KAERI to generate a sensitivity report that includes impact (time and accuracy) by comparing them with the base-case result. In this study, various plume segmentation approaches were investigated, and both the accuracy and speed of offsite consequence analysis were evaluated using MACCS as a consequence analysis tool. A simultaneous evaluation revealed that execution time can be reduced using multi-threading. In addition, this study can serve as a framework for the development of a modeling strategy for plume segmentation in order to perform accurate and fast offsite consequence analyses.

A Method to Calculate Off-site Radionuclide Concentration for Multi-unit Nuclear Power Plant Accident (다수기 원자력발전소 사고 시 소외 방사성물질 농도 계산 방법)

  • Lee, Hye Rin;Lee, Gee Man;Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.144-156
    • /
    • 2018
  • Level 3 Probabilistic Safety Assessment (PSA) is performed for the risk assessment that calculates radioactive material dispersion to the environment. This risk assessment is performed with a tool of MELCOR Accident Consequence Code System (MACCS2 or WinMACCS). For the off-site consequence analysis of multi-unit nuclear power plant (NPP) accident, the single location (Center Of Mass, COM) method has been usually adopted with the assumption that all the NPPs in the nuclear site are located at the same COM point. It was well known that this COM calculation can lead to underestimated or overestimated radionuclide concentration. In order to overcome this underestimation or overestimation of radionuclide concentrations in the COM method, Multiple Location (ML) method was developed in this study. The radionuclide concentrations for the individual NPPs are separately calculated, and they are summed at every location in the nuclear site by the post-processing of radionuclide concentrations that is based on two-dimensional Gaussian Plume equations. In order to demonstrate the efficiency of the ML method, radionuclide concentrations were calculated for the six-unit NPP site, radionuclide concentrations of the ML method were compared with those by COM method. This comparison was performed for conditions of constant weather, yearly weather in Korea, and four seasons, and the results were discussed. This new ML method (1) improves accuracy of radionuclide concentrations when multi-unit NPP accident occurs, (2) calculates realistic atmospheric dispersion of radionuclides under various weather conditions, and finally (3) supports off-site emergency plan optimization. It is recommended that this new method be applied to the risk assessment of multi-unit NPP accident. This new method drastically improves the accuracy of radionuclide concentrations at the locations adjacent to or very close to NPPs. This ML method has a great strength over the COM method when people live near nuclear site, since it provides accurate radionuclide concentrations or radiation doses.

Analysis of severe accident progression and Cs behavior for SBO event during mid-loop operation of OPR1000 using MELCOR

  • Park, Yerim;Shin, Hoyoung;Kim, Seungwoo;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2859-2865
    • /
    • 2021
  • One of the important issues raised from the Fukushima-Daiichi accident is the safety of multi-unit sites when simultaneous accidents occur at the site and recently a multi-unit PSA methodology is being developed worldwide. Since all operation modes of the plant should be considered in the multi-unit PSA, the accident analysis needs to be performed for shutdown operation modes, too. In this study, a station blackout during the mid-loop operation is selected as a reference scenario. The overall accident progression for the mid-loop operation is slower than that for the full-power operation because the residual heat per mass of coolant is about 6 times lower than that in the mid-loop scenario. Though the fractions of Cs released from the core to the RCS in both operation modes are almost the same, the amount of Cs delivered to the containment atmosphere is quite different due to the chemisorption in the RCS. While 45.5% of the initial inventory is chemisorbed on the RCS surfaces during the full-power operation, only 2.2% during the mid-loop operation. The containment remains intact during the mid-loop operation, though 83.9% of Cs is delivered to the containment.