• Title/Summary/Keyword: Multi-Thresholding

Search Result 68, Processing Time 0.024 seconds

A Novel Thresholding for Prediction Analytics with Machine Learning Techniques

  • Shakir, Khan;Reemiah Muneer, Alotaibi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • Machine-learning techniques are discovering effective performance on data analytics. Classification and regression are supported for prediction on different kinds of data. There are various breeds of classification techniques are using based on nature of data. Threshold determination is essential to making better model for unlabelled data. In this paper, threshold value applied as range, based on min-max normalization technique for creating labels and multiclass classification performed on rainfall data. Binary classification is applied on autism data and classification techniques applied on child abuse data. Performance of each technique analysed with the evaluation metrics.

An Image Processing Algorithm for Detection and Tracking of Aerial Vehicles in Short-Range (무인항공기의 근거리 비행체 탐지 및 추적을 위한 영상처리 알고리듬)

  • Cho, Sung-Wook;Huh, Sung-Sik;Shim, Hyun-Chul;Choi, Hyoung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1115-1123
    • /
    • 2011
  • This paper proposes an image processing algorithms for detection and tracking of aerial vehicles in short-range. Proposed algorithm detects moving objects by using image homography calculated from consecutive video frames and determines whether the detected objects are approaching aerial vehicles by the Probabilistic Multi-Hypothesis Tracking method(PMHT). This algorithm can perform better than simple color-based detection methods since it can detect moving objects under complex background such as the ground seen during low altitude flight and consider the characteristics of vehicle dynamics. Furthermore, it is effective for the flight test due to the reduction of thresholding sensitivity against external factors. The performance of proposed algorithm is verified by applying to the onboard video obtained by flight test.

Target Detection Using Texture Features and Neural Network in Infrared Images (적외선영상에서 질감 특징과 신경회로망을 이용한 표적탐지)

  • Sun, Sun-Gu
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.62-68
    • /
    • 2010
  • This study is to identify target locations with low false alarms on thermal infrared images obtained from natural environment. The proposed method is different from the previous researches because it uses morphology filters for Gabor response images instead of an intensity image in initial detection stage. This method does not need precise extracting a target silhouette to distinguish true targets or clutters. It comprises three distinct stages. First, morphological operations and adaptive thresholding are applied to the summation image of four Gabor responses of an input image to find out salient regions. The locations of extracted regions can be classified into targets or clutters. Second, local texture features are computed from salient regions of an input image. Finally, the local texture features are compared with the training data to distinguish between true targets and clutters. The multi-layer perceptron having three layers is used as a classifier. The performance of the proposed method is proved by using natural infrared images. Therefore it can be applied to real automatic target detection systems.

Cloud-based Satellite Image Processing Service by Open Source Stack: A KARI Case

  • Lee, Kiwon;Kang, Sanggoo;Kim, Kwangseob;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.339-350
    • /
    • 2017
  • In recent, cloud computing paradigm and open source as a huge trend in the Information Communication Technology (ICT) are widely applied, being closely interrelated to each other in the various applications. The integrated services by both technologies is generally regarded as one of a prospective web-based business models impacting the concerned industries. In spite of progressing those technologies, there are a few application cases in the geo-based application domains. The purpose of this study is to develop a cloud-based service system for satellite image processing based on the pure and full open source. On the OpenStack, cloud computing open source, virtual servers for system management by open source stack and image processing functionalities provided by OTB have been built or constructed. In this stage, practical image processing functions for KOMPSAT within this service system are thresholding segmentation, pan-sharpening with multi-resolution image sets, change detection with paired image sets. This is the first case in which a government-supporting space science institution provides cloud-based services for satellite image processing functionalities based on pure open source stack. It is expected that this implemented system can expand with further image processing algorithms using public and open data sets.

Automatic Thresholding Selection for Image Segmentation Based on Genetic Algorithm (유전자알고리즘을 이용한 영상분할 문턱값의 자동선정에 관한 연구)

  • Lee, Byung-Ryong;Truong, Quoc Bao;Pham, Van Huy;Kim, Hyoung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.587-595
    • /
    • 2011
  • In this paper, we focus on the issue of automatic selection for multi-level threshold, and we greatly improve the efficiency of Otsu's method for image segmentation based on genetic algorithm. We have investigated and evaluated the performance of the Otsu and Valley-emphasis threshold methods. Based on this observation we propose a method for automatic threshold method that segments an image into more than two regions with high performance and processing in real-time. Our paper introduced new peak detection, combines with evolution algorithm using MAGA (Modified Adaptive Genetic Algorithm) and HCA (Hill Climbing Algorithm), to find the best threshold automatically, accurately, and quickly. The experimental results show that the proposed evolutionary algorithm achieves a satisfactory segmentation effect and that the processing time can be greatly reduced when the number of thresholds increases.

A Study on the Voxel Coloring using Multi-variable Thresholding (다중 가변 문턱값을 이용한 복셀 칼라링 기법에 관한 연구)

  • Kim Hyo-Sung;Lee Sang-Wook;Nam Ki-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1102-1110
    • /
    • 2005
  • In this paper, we proposed a advanced approach to resolve the trade-off problem for the threshold value determining the photo-consistency in the previous algorithms. The threshold value for the surface voxel is substituted the photo-consistency value of the inside voxel. As iterating the voxel coloring process, the threshold is approached to the optimal value for the individual surface voxel. we present an energy minimization formulation of the binary labeling problem that surface voxels classify into opacity or transparency. The energy formula consists of the data term and the smoothness term. As considering neighboring voxels in the labeling problem, the unevenness of reconstructed surface is reduced. The labeling whose energy is the global minimum can be computed using a graph cut.

A Coherent Algorithm for Noise Revocation of Multispectral Images by Fast HD-NLM and its Method Noise Abatement

  • Hegde, Vijayalaxmi;Jagadale, Basavaraj N.;Naragund, Mukund N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.556-564
    • /
    • 2021
  • Numerous spatial and transform-domain-based conventional denoising algorithms struggle to keep critical and minute structural features of the image, especially at high noise levels. Although neural network approaches are effective, they are not always reliable since they demand a large quantity of training data, are computationally complicated, and take a long time to construct the model. A new framework of enhanced hybrid filtering is developed for denoising color images tainted by additive white Gaussian Noise with the goal of reducing algorithmic complexity and improving performance. In the first stage of the proposed approach, the noisy image is refined using a high-dimensional non-local means filter based on Principal Component Analysis, followed by the extraction of the method noise. The wavelet transform and SURE Shrink techniques are used to further culture this method noise. The final denoised image is created by combining the results of these two steps. Experiments were carried out on a set of standard color images corrupted by Gaussian noise with multiple standard deviations. Comparative analysis of empirical outcome indicates that the proposed method outperforms leading-edge denoising strategies in terms of consistency and performance while maintaining the visual quality. This algorithm ensures homogeneous noise reduction, which is almost independent of noise variations. The power of both the spatial and transform domains is harnessed in this multi realm consolidation technique. Rather than processing individual colors, it works directly on the multispectral image. Uses minimal resources and produces superior quality output in the optimal execution time.

Water Detection in an Open Environment: A Comprehensive Review

  • Muhammad Abdullah, Sandhu;Asjad, Amin;Muhammad Ali, Qureshi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Open surface water body extraction is gaining popularity in recent years due to its versatile applications. Multiple techniques are used for water detection based on applications. Different applications of Radar as LADAR, Ground-penetrating, synthetic aperture, and sounding radars are used to detect water. Shortwave infrared, thermal, optical, and multi-spectral sensors are widely used to detect water bodies. A stereo camera is another way to detect water and different methods are applied to the images of stereo cameras such as deep learning, machine learning, polarization, color variations, and descriptors are used to segment water and no water areas. The Satellite is also used at a high level to get water imagery and the captured imagery is processed using various methods such as features extraction, thresholding, entropy-based, and machine learning to find water on the surface. In this paper, we have summarized all the available methods to detect water areas. The main focus of this survey is on water detection especially in small patches or in small areas. The second aim of this survey is to detect water hazards for unmanned vehicles and off-sure navigation.

Single chip multi-function peripheral image processor with unified binarization architecture (통합된 이진화 구조를 가진 복합기용 1-Chip 영상처리 프로세서의 개발)

  • Park, Chang-Dae;Lee, Eul-Hwan;Kim, Jae-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.34-43
    • /
    • 1999
  • A high-speed image processor (HIP) is implemented for a high-speed multi-function peripheral. HIP has a binarization architecture with unified data path. It has the pixel-by-pixel pipelined processing to minimize size of the external memory. It performs pre-processing such as shading correction, automatic gain control (AGC), and gamma correction, and also drives external CCD or CIS modules. The pre-processed data can be enlarged or reduced. Various binarizatin algorithms can be processed in the unified archiecture. The embedded binarization algorithms are simple thresholding, high pass filtering, dithering, error diffusion, and thershold modulated error diffusion. These binarization algorithms are unified based on th threshold modulated error diffusion. The data path is designed to share the common functional block of the binarization algorithms. The complexity of the controls and the gate counts is greatly reduced with this novel architecture.

  • PDF

Analysis on the Sedimentary Environment Change Induced by Typhoon in the Sacheoncheon, Gangneung using Multi-temporal Remote Sensing Data (태풍 루사에 의한 강릉 사천천 주변 퇴적 환경 변화: 다중 시기 원격탐사 자료를 이용한 정보 분석)

  • Park, No-Wook;Jang, Dong-Ho;Chi, Kwang-Hoon
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.83-94
    • /
    • 2006
  • The objective of this paper is to extract and analyze the sediment environment change information in the Sachencheon, Gangneung, Korea that was seriously damaged as a result of typhoon Rusa aftermath early in September, 2002 using multi-temporal remote sensing data. For the extraction of change information, an unsupervised approach based on the automatic determination of thresholding values was applied. As the change detection results, turbidity changes right after typhoon Rusa, the decrease of wetlands, the increase of dry sand and channel width and changes of relative level in the stream due to seasonal variation were observed. Sedimentation in the cultivated areas and restoration works also affected the change near the Sacheoncheon. In addition to the change detection analysis, several environmental thematic maps including microtopographic map, distributions of estimated amount of flood deposits and flood hazard landform classification map were generated by using remote sensing and field survey data. In conclusion, multi-temporal remote sensing data can be effectively used for natural hazard analysis and damage information extraction and specific data processing techniques for high-resolution remote sensing data should also be developed.