• Title/Summary/Keyword: Multi-Story Structure

Search Result 145, Processing Time 0.022 seconds

ViStoryNet: Neural Networks with Successive Event Order Embedding and BiLSTMs for Video Story Regeneration (ViStoryNet: 비디오 스토리 재현을 위한 연속 이벤트 임베딩 및 BiLSTM 기반 신경망)

  • Heo, Min-Oh;Kim, Kyung-Min;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.138-144
    • /
    • 2018
  • A video is a vivid medium similar to human's visual-linguistic experiences, since it can inculcate a sequence of situations, actions or dialogues that can be told as a story. In this study, we propose story learning/regeneration frameworks from videos with successive event order supervision for contextual coherence. The supervision induces each episode to have a form of trajectory in the latent space, which constructs a composite representation of ordering and semantics. In this study, we incorporated the use of kids videos as a training data. Some of the advantages associated with the kids videos include omnibus style, simple/explicit storyline in short, chronological narrative order, and relatively limited number of characters and spatial environments. We build the encoder-decoder structure with successive event order embedding, and train bi-directional LSTMs as sequence models considering multi-step sequence prediction. Using a series of approximately 200 episodes of kids videos named 'Pororo the Little Penguin', we give empirical results for story regeneration tasks and SEOE. In addition, each episode shows a trajectory-like shape on the latent space of the model, which gives the geometric information for the sequence models.

A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations

  • Ghasemof, Ali;Mirtaheri, Masoud;Mohammadi, Reza Karami;Salkhordeh, Mojtaba
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.35-57
    • /
    • 2022
  • This article presents a computationally efficient framework for multi-objective seismic design optimization of steel moment-resisting frame (MRF) structures based on the nonlinear dynamic analysis procedure. This framework employs the uniform damage distribution philosophy to minimize the weight (initial cost) of the structure at different levels of damage. The preliminary framework was recently proposed by the authors based on the single excitation and the nonlinear static (pushover) analysis procedure, in which the effects of record-to-record variability as well as higher-order vibration modes were neglected. The present study investigates the reliability of the previous framework by extending the proposed algorithm using the nonlinear dynamic design procedure (optimization under multiple ground motions). Three benchmark structures, including 4-, 8-, and 12-story steel MRFs, representing the behavior of low-, mid-, and high-rise buildings, are utilized to evaluate the proposed framework. The total weight of the structure and the maximum inter-story drift ratio (IDRmax) resulting from the average response of the structure to a set of seven ground motion records are considered as two conflicting objectives for the optimization problem and are simultaneously minimized. The results of this study indicate that the optimization under several ground motions leads to almost similar outcomes in terms of optimization objectives to those are obtained from optimization under pushover analysis. However, investigation of optimal designs under a suite of 22 earthquake records reveals that the damage distribution in buildings designed by the nonlinear dynamic-based procedure is closer to the uniform distribution (desired target during the optimization process) compared to those designed according to the pushover procedure.

Active structural control via metaheuristic algorithms considering soil-structure interaction

  • Ulusoy, Serdar;Bekdas, Gebrail;Nigdeli, Sinan Melih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, multi-story structures are actively controlled using metaheuristic algorithms. The soil conditions such as dense, normal and soft soil are considered under near-fault ground motions consisting of two types of impulsive motions called directivity effect (fault normal component) and the flint step (fault parallel component). In the active tendon-controlled structure, Proportional-Integral-Derivative (PID) type controller optimized by the proposed algorithms was used to achieve a control signal and to produce a corresponding control force. As the novelty of the study, the parameters of PID controller were determined by different metaheuristic algorithms to find the best one for seismic structures. These algorithms are flower pollination algorithm (FPA), teaching learning based optimization (TLBO) and Jaya Algorithm (JA). Furthermore, since the influence of time delay on the structural responses is an important issue for active control systems, it should be considered in the optimization process and time domain analyses. The proposed method was applied for a 15-story structural model and the feasible results were found by limiting the maximum control force for the near-fault records defined in FEMA P-695. Finally, it was determined that the active control using metaheuristic algorithms optimally reduced the structural responses and can be applied for the buildings with the soil-structure interaction (SSI).

A Study on Interactive Storytelling Script Language for Generating the Stories (이야기 생성을 위한 인터랙티브 스토리텔링 스크립트 언어에 관한 연구)

  • Kim, Seok-Kyoo;Moon, Sung-Hyun;Park, Jun;Chang, Jun-O;Han, Sang-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.313-322
    • /
    • 2009
  • A multi-story can be generated by the interactions of users in the interactive storytelling system. In this paper, I suggest narrative structure and corresponding Storytelling Markup Language and implement the system that processes a story presented using this language. This research will be basis of making an authoring tool for interactive storytelling. It can be used to make a story tool and story presentation tool using text, image, animation with user interaction.

  • PDF

Energy-based seismic design of structures with buckling-restrained braces

  • Kim, Jinkoo;Choi, Hyunhoon;Chung, Lan
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.437-452
    • /
    • 2004
  • A simplified seismic design procedure for steel structures with buckling-restrained braces (BRB) was proposed based on the energy balance concept and the equal energy assumption. The input seismic energy was estimated from a design spectrum, and the elastic and hysteretic energy were computed using energy balance concept. The size of braces was determined so that the hysteretic energy demand was equal to the hysteretic energy dissipated by the BRB. The validity of using equivalent single-degree-of-freedom systems to estimate seismic input and hysteretic energy demand in multi story structures with BRB was investigated through time-history analysis. The story-wise distribution pattern of hysteretic energy demands was also obtained and was applied in the design process. According to analysis results, the maximum displacements of the 3-story structure designed in accordance with the proposed procedure generally coincided with the target displacements on the conservative side. The maximum displacements of the 6- and 8-story structures, however, turned out to be somewhat smaller than the target values due to the participation of higher vibration modes.

The multi-level understanding of Shamanistic myth Princess Bari as a narrative: focusing on levels of story, composition, and communication (무속신화 <바리공주> 서사의 다층적 이해 - 이야기·생성·소통의 세 층위를 대상으로)

  • Oh, Sejeong
    • 기호학연구
    • /
    • no.54
    • /
    • pp.119-145
    • /
    • 2018
  • This paper attempts to divide the narrative into three levels and review the approach methodology to understand Princess Bari as a narrative. If the stratification of the narrative, the analysis of each levels, and the integrated approach to them are made, this can contribute to suggesting new directions and ways to understand and study Princess Bari. The story level of Princess Bari, the surface structure, is shaped by the space movement and the chronological sequential structure of the life task that started from the birth of the main character. This story shows how a woman who was denied her existence by her father as soon as she was born finds an ontological transformation and identities through a process. Especially, the journey of finding identity is mainly formed through the events that occur through the relationship with family members. This structure, which can be found in the narrative level, forms a deep structure with the oppositional paradigm of family members' conflict and reconciliation, life and death. The thought structure revealed in this story is the problem of life is the problem of family composition, and the problem of death is also the same. In response to how to look at the unified world of coexistence of life and death, this tradition group of myths makes a relationship with man and God. This story is mainly communicated in the Korean shamanistic ritual(Gut) that sent the dead to the afterlife. Although the shaman is the sender and the participants in the ritual are the receivers, the story is well known a message that does not have new information repeated in certain situations. In gut, the patrons and participants do not simply accept the narrative as a message, but accept themselves as codes for reconstructing their lives and behavior through autocommunication. By accepting the characters and events of as a homeomorphism relationship with their lives, people accept the everyday life as an integrated view of life and death, disjunction and communication, conflict and reconciliation, and the present viewpoint. It can not change the real world, but it changes the attitude of 'I' about life. And it is a change and transformation that can be achieved through personal communication like the transformation of Princess Bari into god in myth. Thus, Princess Bari shows that each meaning and function in the story level, composition level, and communication level is related to each other. In addition, the structure revealed by this narrative on three levels is also effective in revealing the collective consciousness and cultural system of the transmission group.

Seismic response control of a building complex utilizing passive friction damper: Analytical study

  • Ng, C.L.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.85-105
    • /
    • 2006
  • Control of structural response due to seismic excitation in a manner of coupling adjacent buildings has been actively developed, and most attention focused on those buildings of similar height. However, with the rapid development of some modern cities, multi-story buildings constructed with an auxiliary low-rise podium structure to provide extra functions to the complex become a growing construction scheme. Being inspired by the positively examined coupling control approach for buildings with similar height, this paper aims to provide a comprehensive analytical study on control effectiveness of using friction dampers to link the two buildings with significant height difference to supplement the recent experimental investigation carried out by the writers. The analytical model of a coupled building system is first developed with passive friction dampers being modeled as Coulomb friction. To highlight potential advantage of coupling the main building and podium structure with control devices that provide a lower degree of coupling, the inherent demerit of rigid-coupled configuration is then evaluated. Extensive parametric studies are finally performed. The concerned parameters influencing the design of optimal friction force and control efficiency include variety of earthquake excitation and differences in floor mass, story number as well as number of dampers installed between the two buildings. In general, the feasibility of interaction control approach applied to the complex structure for vibration reduction due to seismic excitation is supported by positive results.

The Structure of Oriental Wooden Pagoda (동양목조탑파(東洋木造塔婆)의 구조형식(構造形式)에 관한 연구(硏究) - 법주사(法住寺) 팔상전(捌相殿)과 법륭사(法隆寺) 오중탑(五重塔)의 비교분석적 측면에서 -)

  • Kim, Kyeong-Pyo;Fujii, Keisuke;Lee, Min-Sup
    • Journal of architectural history
    • /
    • v.1 no.1 s.1
    • /
    • pp.88-105
    • /
    • 1992
  • This dissertation aims to investigate the structure of Palsangjeon, a five story wooden pagoda in Pubjoo Temple which is the only wooden pagoda existing in Korea, by a comparative study of the Palsangjeon with Japanese counterparts. By doing so, the writer of the present investigation attempts to find out its structural originality. The main finding of this study are as follows. The upper part of Palsangjeon is constructed with square log frameworks called GuiTl and Sacheon-Ju around the central column. The four walls along Sacheon-Ju from the 1st level to the 3rd well resists the outside horizontal piressure. And Gui-Tl structure on the 5th level copes much better with shear force. So this frame consisting of Sacheon-Ju and log frameworks might be viewed an semi-core system, This core is supported once again by the frame of Go-Ju. That is to say. Go-Ju supports frame of Sacheon-Ju. And the frame of Pyeong-Ju on the 4th and the 5th levels also supports it. The frame of Go-Ju is supported by the frame of Pyeong-Ju on the 1st and the 2nd levels. So this structure is designed to resist the wind and also keep the balance by properly distributing vertical pressure. The plan and the elevational structure of Palsangjeon keep the balance by the perfect symmetric structure. And the frame of Sacheon-Ju forming semi-core system can resist both the lateral load and the vertical pressure for the balance of its structure. The five story pagoda in Horyuji used to stand on a central which is desigend to support the main body of the pagoda from the first level. The principles of balance is used between the Ha-Aag and short to react the rafter. Sacheon-Ju and edge column is against the lateral load. The structural jointing system is stable thanks to the log framewroks formed on every level. The five story pagoda in Horyuji poseses the structual system originated from the ancient wooden pagoda. The pagoda is found to express simple, sincere and straight forward form. On the other hand, it could be seen as a stucture resisting the earthquake and the lateral load, Palsangjeon is an excellent building which religions function is well harmonized with its structure and appearance. It not only functions extremely well as a regions place like other pagodas, but also excellently shows how multi-story wooden building should be structured.

  • PDF

A numerical study on optimal FTMD parameters considering soil-structure interaction effects

  • Etedali, Sadegh;Seifi, Mohammad;Akbari, Morteza
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.527-538
    • /
    • 2018
  • The study on the performance of the nonlinear friction tuned mass dampers (FTMD) for the mitigation of the seismic responses of the structures is a topic that still inspires the efforts of researchers. The present paper aims to carry out a numerical study on the optimum tuning of TMD and FTMD parameters using a multi-objective particle swarm optimization (MOPSO) algorithm including soil-structure interaction (SSI) effects for seismic applications. Considering a 3-story structure, the performances of the optimized TMD and FTMD are compared with the uncontrolled structure for three types of soils and the fixed base state. The simulation results indicate that, unlike TMDs, optimum tuning of FTMD parameters for a large preselected mass ratio may not provide a best and optimum design. For low mass ratios, optimal selection of friction coefficient has an important key to enhance the performance of FTMDs. Consequently, a free parameter search of all FTMD parameters provides a better performance in comparison with considering a preselected mass ratio for FTMD in the optimum design stage of the FTMD. Furthermore, the SSI significant effects on the optimum design of the TMD and FTMD. The simulation results also show that the FTMD provides a better performance in reducing the maximum top floor displacement and acceleration of the building in different soil types. Moreover, the performance of the TMD and FTMD decrease with increasing soil softness, so that ignoring the SSI effects in the design process may give an incorrect and unrealistic estimation of their performance.

A Vibration Control of Building Structure using Neural Network Predictive Controller (신경회로망 예측 제어기를 이용한 건축 구조물의 진동제어)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Kang, Suk-Bong;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.434-443
    • /
    • 1999
  • In this paper, neural network predictive PID (NNPPID) control system is proposed to reduce the vibration of building structure. NNPPID control system is made up predictor, controller, and self-tuner to yield the parameters of controller. The neural networks predictor forecasts the future output based on present input and output of building structure. The controller is PID type whose parameters are yielded by neural networks self-tuning algorithm. Computer simulations show displacements of single and multi-story structure applied to NNPPID system about disturbance loads-wind forces and earthquakes.

  • PDF