• Title/Summary/Keyword: Multi-Static

Search Result 662, Processing Time 0.026 seconds

Investigation of Nonlinear Numerical Mathematical Model of a Multiple Shaft Gas Turbine Unit

  • Kim, Soo-Yong;Valeri P. Kovalevsky
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2087-2098
    • /
    • 2003
  • The development of numerical mathematical model to calculate both the static and dynamic characteristics of a multi-shaft gas turbine consisting of a single combustion chamber, including advanced cycle components such as intercooler and regenerator is presented in this paper. The numerical mathematical model is based on the simplified assumptions that quasi-static characteristic of turbo-machine and injector is used, total pressure loss and heat transfer relation for static calculation neglecting fuel transport time delay can be employed. The supercharger power has a cubical relation to its rotating velocity. The accuracy of each calculation is confirmed by monitoring mass and energy balances with comparative calculations for different time steps of integration. The features of the studied gas turbine scheme are the starting device with compressed air volumes and injector's supercharging the air directly ahead of the combustion chamber.

A method for static and dynamic analyses of stiffened multi-bay coupled shear walls

  • Bozdogan, Kanat Burak;Ozturk, Duygu
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.479-489
    • /
    • 2008
  • In this study an approximate method based on the continuum approach and transfer matrix method for static and dynamic analyses of stiffened multi-bay coupled shear walls is presented. In this method the whole structure is idealized as a sandwich beam. Initially the differential equation of this equivalent sandwich beam is written then shape functions for each storey is obtained by the solution of differential equations. By using boundary conditions and storey transfer matrices which are obtained by these shape functions, system modes and periods can be calculated. Reliability of the study is shown with a few examples. A computer program has been developed in MATLAB and numerical samples have been solved for demonstration of the reliability of this method. The results of the samples show the agreement between the present method and the other methods given in literature.

Static Gait Generation of Quadruped Walking Robot (4각 보행 로봇의 정적 걸음새 생성)

  • Kim, Nam-Woong;Sin, Hyo-Chol;Kim, Kug-Weon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.217-222
    • /
    • 2007
  • This paper describes a static gait generation process and a mechanical design process of leg mechanisms for quadruped robots. Actually robot walking is realized with the joint motion of leg mechanisms. In order to calculate the time-angle trajectories for each joint of leg mechanisms, we generate end-tip trajectories with time for each leg in the global inertial coordinate system intuitively, followed by coordinate transformations of the trajectories into the local coordinates system fixed in each leg, finally the angle-time trajectories of each joint of leg mechanisms are obtained with inverse kinematics. The stability of the gait generated in this paper was verified by a multi-body dynamic analysis using the commercial software $ADAMS^{(R)}$. Additionally the mechanical specifications such as gear reduction ratio, electrical specifications of motor and electrical power consumption during walking have been confirmed by the multi-body dynamic analysis. Finally we constructed a small quadruped robot and confirmed the gait.

Evaluation of the Degradation Trend of the Polyurethane Resilient Pad in the Rail Fastening System by Multi-stress Accelerated Degradation Test (복합가속열화시험을 통한 레일체결장치 폴리우레탄 탄성패드의 열화 경향 분석)

  • Sung, Deok-Yong;Park, Kwang-Hwa
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.466-472
    • /
    • 2013
  • The use of a concrete track is gradually growing in urban and high-speed railways in many part of the world. The resilient pad, which is essentially when concrete tracks are used, plays the important role of relieving the impact caused by train loads. The simple fatigue test[1] to estimate the variable stiffness of resilient pads is usually performed, but it differs depending on the practical conditions of different railways. In this study, the static stiffness levels of used resilient pads according to passing tonnages levels were measured in laboratory tests. Also, the simple fatigue test and the multi-stress accelerated degradation test for new resilient pads were performed in a laboratory. The static stiffness of the used pad was compared with the results of tests of usage times and cycles. The results of the comparison showed that the variable static stiffness levels of the used pad were similar to results of the multi-stress accelerated degradation test considering the fatigue and heat load. With a T-NT equation related to the degree of the multi-stress accelerated degradation, a model of multi-stress accelerated degradation for a resilient pad was devised. It was found through this effort that the total acceleration factor was approximately 2.62. Finally, this study proposes an equation for a multi-stress accelerated degradation model for polyurethane resilient pads.

Design for Strengthening Structural Integrity of the Reflective Metal Insulation in the Nuclear Power Plant (원전 금속단열재의 구조 건전성 강화를 위한 설계 방안)

  • Lee, Sung Myung;Eo, Min Hun;Kim, Seung Hyun;Jang, Kye Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • The goal of this paper is to investigate structural integrity factors of RMI(reflective metal insulation) to confirm the design requirements in nuclear power plant. Currently, a glass wool insulation is using now, but it will gradually be replaced with the reflective metal insulation maded by stainless steel plates. The main function of an insulation is to minimize a heat loss of vessel and pipes in RCS(reactor coolant system). It has to maintain structural a integrity in nuclear power plant life duration. In this study, the structural integrity analysis was carried out both multi-plate and outer shell plate by using a static analysis and experimental test. First, inner multi-plate has a self support structure for being air space. Because the effect of total static weight in multi-layer plate is low, a plate collapse possibility is not high. Considering optimum thin plate pressing process, it has to pre-check the basic physical properties. Second, the outer segment thickness and stiffener shape are verified by the numerical static analysis, and sample test for both type of panel and cylindrical pipe model.

Analysis and Experimental Investigation of Cylindrical Hydrostatic Bearing (진원형 정수압 베어링의 해석 및 실험적 고찰)

  • 문호지;한동철
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.57-67
    • /
    • 1990
  • For increasing the performance of Machine tools, the improvement of the static and dynamic characteristics of spindle bearing is important. In this paper are the static characteristics, the pressure distribution, friction force and outlet flow rate, and the dynamic characteristics stiffness and damping coefficient, of a cylindrical hydrostatic journal bearing with multi oil pockets are analyzed.

Structural Design Optimization of a High Speed Machining Center by Using a Simple Genetic Algorithm (유전 알고리즘을 이용한 고속 금형센터의 구조설계 최적화)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1006-1009
    • /
    • 2000
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduced in order to minimize the static compliance, the dynamic compliance, and the weight of a high speed machining center simultaneously. Dimensional thicknesses of the eight structural members on the static force loop are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body only was reduced to 57.75% and the weight of the whole machining center was reduced to 46.2% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even though they were slightly increased than before.

  • PDF

Object-Oriented Petri Net Model for Representation of Flexible Process Plan (유연공정계획 표현을 위한 객체지향형 페트리네트 모델)

  • Lee, Kyung-Huy
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.4
    • /
    • pp.669-686
    • /
    • 1997
  • In this research, an object-oriented Petri net model for representing a flexible process plan is proposed, which is hierarchically multi-faceted for supporting planning, scheduling, and shop floor control functions. The multi-faceted process plan model consists of the following: a) an object model which represents on object-oriented data model, b) a static model which represents a process flow model with process alternatives, and c) a dynamic model which represents a process activity model with resources alternatives, of a flexible process plan. Petri nets allow the static and the dynamic process plan models to be represented in a unified formalism with an ease of model transformation. The multi-faceted process plan model suggested in this paper, is illustrated with a prismatic port in comprehensive detail.

  • PDF

A Study on the Three Phase Multi-PAM Inverter using the one-chip Microcomputer for UPS. (원칩 마이크로 컴퓨터를 이용한 UPS용 3상 다중 PAM 인버터에 관한 연구)

  • 김성백;이종규
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.3 no.2
    • /
    • pp.63-68
    • /
    • 1989
  • This paper discussed the Multi-PAM inverter for static power supply design. The controller part composed of one-chip microcomputer obtained control pattern simply. The configuration of termination part was composed of double bridge inverter and three-phase, three-winding transformer. The output waveforms using a controller and transformers synthesized the multi-PAM wave form by a voltage level of 22 steps per one-cycle. The output waveforms using the Low Pass Filter approximated to the sine wave.

  • PDF

A Case Study on Reliability Test of Embedded Software in the Multi-Function Radar (다기능레이더 소프트웨어 신뢰성시험 적용사례 및 결과)

  • Kim, Jong-Woo
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.431-439
    • /
    • 2015
  • This paper introduces analysis technique and test procedure for verifying the reliability of the multi-function radar software. Also the process of software development and reliability test method for reducing the development period are described. Test results show that the verified software has reduced errors and improved reliability compared to the unverified software.