• Title/Summary/Keyword: Multi-Static

Search Result 662, Processing Time 0.023 seconds

Modeling of a Multi-Leaf Spring for Dynamic Characteristics Analysis of a Large Truck (대형트럭 동특성 해석을 위한 다판 스프링의 모델링)

  • Moon Il Dong;Oh Seok Hyung;Oh Chae Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.147-153
    • /
    • 2004
  • This paper presents an analytical modeling technique fer representing a hysteretic behavior of a multi-leaf spring used for a large truck. It divides a nonlinear hysteretic curve of the multi-leaf spring into four parts; loading part, unloading part and two transition parts. It provides conditions fur branching to a part of the curve corresponding to a current multi-leaf spring status. This paper also presents a computational modeling technique of the multi-leaf spring. It models the multi-leaf spring with three links and a shackle. It assumes those components as rigid bodies. The links are connected by rotational joints, and have rotational springs at the joints. The spring constants of the rotational springs are computed with a force from the analytical model of the hysteretic curve of the multi-leaf spring. Static and dynamic tests are performed to verify the reliability of the presented techniques. The tests are performed with various amplitudes and excitation frequencies. The hysteretic curves from the tests are compared with those from the simulations. Since th e presented techniques reproduce the hysteretic characteristic of the multi -leaf spring faithfully, they contribute on improving the reliability of the computational model of a large truck.

A Study on the Effects of Hysteretic Characteristics of Leaf Springs on Handling of a Large-Sized Truck (판스프링의 이력특성이 대형트럭의 조종성능에 미치는 영향에 관한 연구)

  • 문일동;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.157-164
    • /
    • 2001
  • This paper performs static and dynamic tests of a multi-leaf spring and a tapered leaf spring to investigate their hysteretic characteristics. In the static test, trapezoidal input load is applied with 0.1Hz excitation frequency and with zero initial loading conditions. In the dynamic test, sinusoidal input load is applied with five excitation amplitudes and three excitation frequencies. In these tests, static and dynamic hysteretic characteristics of the multi-leaf spring and the tapered leaf spring are compared, and, the effects of excitation amplitudes and frequencies on dynamic spring rate are also shown. In this paper, actual vehicle tests are performed to study the effects of hysteretic characteristics of the large-sized truck's handling performance. The multi-leaf spring or the tapered leaf spring is used in the front suspension. The actual vehicle test is performed in a double lane change track with three velocities. Lateral acceleration, yaw rate and roll angle are measured using a gyro-meter located at the mass center of the cab. The test results showed that a large-sized truck with a tapered leaf spring needs to have an additional apparatus such as roll stabilizer bar to increase the roll stabilizer due to hysteretic characteristics.

  • PDF

Design Optimization of the Rib Structure of a 5-Axis Multi-functional Machine Tool Considering Static Stiffness (정강성을 고려한 5축 복합가공기의 리브 구조 최적설계)

  • Kim, Seung-Gi;Kim, Ji-Hoon;Kim, Se-Ho;Youn, Jae-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.313-320
    • /
    • 2016
  • The need for high-strength, multi-axis, and multi-functional machine tools has recently increased because of part complexity and workpiece strength. However, most of the machine tool manufacturers rely on experience for a detailed design because of the shortcomings in the existing design technology. This study uses a topology optimization method to more effectively design a large multi-functional machine tool considering static stiffness. The ram, saddle, and column parts are important structures in a machine tool. Hence, they are selected for the finite element method analysis. Based on this analysis, the optimized internal rib structure for those parts is designed for desirable rigidity and weight. This structure could possibly provide the required design technology for machine tool manufacturers.

Methods of analysis for buildings with uni-axial and bi-axial asymmetry in regions of lower seismicity

  • Lumantarna, Elisa;Lam, Nelson;Wilson, John
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.81-95
    • /
    • 2018
  • Most buildings feature core walls (and shear walls) that are placed eccentrically within the building to fulfil architectural requirements. Contemporary earthquake design standards require three dimensional (3D) dynamic analysis to be undertaken to analyse the imposed seismic actions on this type of buildings. A static method of analysis is always appealing to design practitioners because results from the analysis can always be evaluated independently by manual calculation techniques for quality control purposes. However, the equivalent static analysis method (also known as the lateral load method) which involves application of an equivalent static load at a certain distance from the center of mass of the buildings can generate results that contradict with results from dynamic analysis. In this paper the Generalised Force Method of analysis has been introduced for multi-storey buildings. Algebraic expressions have been derived to provide estimates for the edge displacement ratio taking into account the effects of dynamic torsional actions. The Generalised Force Method which is based on static principles has been shown to be able to make accurate estimates of torsional actions in seismic conditions. The method is illustrated by examples of two multi-storey buildings. Importantly, the black box syndrome of a 3D dynamic analysis of the building can be circumvented.

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

A proposal on multi-agent static path planning strategy for minimizing radiation dose

  • Minjae Lee;SeungSoo Jang;Woosung Cho;Janghee Lee;CheolWoo Lee;Song Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.92-99
    • /
    • 2024
  • To minimize the cumulative radiation dose, various path-finding approaches for single agent have been proposed. However, for emergence situations such as nuclear power plant accident, these methods cannot be effectively utilized for evacuating a large number of workers because no multi-agent method is valid to conduct the mission. In this study, a novel algorithm for solving the multi-agent path-finding problem is proposed using the conflict-based search approach and the objective function redefined in terms of the cumulative radiation dose. The proposed method can find multi paths that all agents arrive at the destinations with reducing the overall radiation dose. To verify the proposed method, three problems were defined. In the single-agent problem, the objective function proposed in this study reduces the cumulative dose by 82% compared with that of the shortest distance algorithm in experiment environment of this study. It was also verified in the two multi-agent problems that multi paths with minimized the overall radiation dose, in which all agents can reach the destination without collision, can be found. The method proposed in this study will contribute to establishing evacuation plans for improving the safety of workers in radiation-related facilities.

Comparison of Multi-Static Sonar Target Positioning Performance (다중상태 소나망 위치 추정 성능 비교)

  • Park, Chee-Hyun;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.166-172
    • /
    • 2007
  • In this paper, we address the target positioning performance of Multi-Static sonar with respect to target positioning method and measurement error. Based on the analysis on two candidate solution approaches, namely, Least Square (LS) using range and angular information simultaneously and Maximum Likelihood (ML) using only range information as the existing information fusion methods for possible application to Multi-Static sonar, we propose to employ ML using range and angular information. Assuming that each sensor can receive range and angular information, we conduct representative comparison experiments over the existing and proposed methods under various measurement noise scenarios. We also investigate the target positioning performance according to number of sensors, distance between transmitter and receiver. According to the experimental results, RMSE of the proposed ML with distance and direction information is found to be more superior to ML using distance alone and to LS in case distance between transmitter and receiver is longer and number of receiver is smaller.

Modal Analysis of Human Leg with Respect to Hip Joint Position by Using Multibody Modeling (다물체 모델링을 통한 Hip Joint 위치에 따른 인체 Leg부의 고유진동특성 분석)

  • NamGoong, Hong;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.761-766
    • /
    • 2010
  • The goal of this study is to analysis natural frequency for different static postures of human leg. To perform this research human leg is modeled by multi-body modeling for the musculoskeletal system. This leg model has biarticular muscles which acting on two joints and the muscles represents some of the major muscles, such as hamstring, of the upper and lower limbs. To obtain each static equilibrium position energy method is employed and to analysis natural frequency linearization method for constrained mechanical system is employed. Static equilibrium position depends on some parameter or condition such as hamstring stiffness or external force. Making a change these parameter the aim of this research can be performed.

Dynamic Characteristic Analysis of SSSC Based on Multi-bridge PAM Inverter

  • Han Byung-Moon;Kim Hee-Joong;Baek Seung-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.539-545
    • /
    • 2001
  • This paper proposes a static synchronous series compensator based on multi-bridge inverter. The proposed system consists of 6 H-bridge modules per phase, which generate 13 pulses for each half period of power frequency. The dynamic characteristic was analyzed by simulations with EMTP code, assuming that it is inserted in the 154-kV transmission line of one-machine-infinite-bus power system. The feasibility of hardware implementation was verified through experimental works using a scaled model. The proposed system does not require a coupling transformer for voltage injection, and has flexibility in expanding the operation voltage by increasing the number of H-bridge modules.

  • PDF