• 제목/요약/키워드: Multi-Stage process

검색결과 527건 처리시간 0.033초

SWG 추진을 위한 다중수원 워터루프 시스템 관련 법제도 개선방안 (Legal Improvements for SWG Application Relevant to the Water Loop System with Multi-Water Resources)

  • 서진석;김영화;한국헌;김동환
    • 한국관개배수논문집
    • /
    • 제21권1호
    • /
    • pp.127-140
    • /
    • 2014
  • Recently drastic climate changes(e.g., extreme floods and droughts) are often taking place around the world. Even an increase in uncertainty, population, and mega cities has caused drastic changes in water recycle process. As in other countries, Korea has faced some issues relevant to water security. In response to these changes, Smart Water Grid(SWG) system combining the current water resources management with ICT (Information and Communications Technology) is considered as a new paradigm for the Korean water resources management. This study aims to explore and identify influential factors contributing to the SWG system's application to analyze the importance and role of those factors, and then to offer a policy suggestion for the successful application of the SWG system along with legislative improvements in Korea. In this study, we looked at different barriers related to the SWG application and also the complicated Korean water laws, enacted by different ministries and in order to efficiently apply the SWG system to the current Korean water resources management structures. This study employed qualitative research methods to analyze and identify the priorities of the tasks to be implemented by analyzing conditions for the SWG application, especially related to multi water sources and micro water grid, because legal and institutional measures can be more important to manage conflicts between different stakeholders once the SWG enters a phase of standardization and commercialization from its development stage.

  • PDF

A wavelet finite element-based adaptive-scale damage detection strategy

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.285-305
    • /
    • 2014
  • This study employs a novel beam-type wavelet finite element model (WFEM) to fulfill an adaptive-scale damage detection strategy in which structural modeling scales are not only spatially varying but also dynamically changed according to actual needs. Dynamical equations of beam structures are derived in the context of WFEM by using the second-generation cubic Hermite multiwavelets as interpolation functions. Based on the concept of modal strain energy, damage in beam structures can be detected in a progressive manner: the suspected region is first identified using a low-scale structural model and the more accurate location and severity of the damage can be estimated using a multi-scale model with local refinement in the suspected region. Although this strategy can be implemented using traditional finite element methods, the multi-scale and localization properties of the WFEM considerably facilitate the adaptive change of modeling scales in a multi-stage process. The numerical examples in this study clearly demonstrate that the proposed damage detection strategy can progressively and efficiently locate and quantify damage with minimal computation effort and a limited number of sensors.

Multi- effect air gap membrane distillation process for pesticide wastewater treatment

  • Pangarkar, Bhausaheb L.;Deshmukh, Samir K.;Thorat, Prashant V.
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.529-541
    • /
    • 2017
  • A multi-effect air gap membrane distillation (ME-AGMD) module for pesticide wastewater treatment is studied with internal heat recovery, sensible heat of brine recovery, number of stages and the use of fresh feed as cooling water in a single module is implemented in this study. A flat sheet polytetrafluroethylene (PTFE) membrane was used in the 4-stage ME-AGMD module. The maximum value of permeate flux could reach $38.62L/m^2h$ at feed -coolant water temperature difference about $52^{\circ}C$. The performance parameter of the module like, specific energy consumption and gain output ratio (GOR) was investigated for the module with and without heat recovery. Also, the module performance was characterized with respect to the separation efficiency of several important water quality parameters. The removal efficiency of the module was found to be >98.8% irrespective water quality parameters. During the experiment the membrane fouling was caused due to the deposition of the salt/crystal on the membrane surface. The membrane fouling was controlled by membrane module washing cycle 9 h and also by acidification of the feed water (pH=4) using 0.1M HCl solution.

세장비가 큰 사각케이스 성형 공정에서의 인공신경망을 적용한 초기 블랭크 형상 최적설계 모델 개발 (A Development of Optimal Design Model for Initial Blank Shape Using Artificial Neural Network in Rectangular Case Forming with Large Aspect Ratio)

  • 곽민준;박지우;박근태;강범수
    • 소성∙가공
    • /
    • 제29권5호
    • /
    • pp.272-281
    • /
    • 2020
  • As the thickness of mobile communication devices is getting thinner, the size of the internal parts is also getting smaller. Among them, the battery case requires a high-level deep drawing technique because it has a rectangular shape with a large aspect ratio. In this study, the initial blank shape was optimized to minimize earing in a multi-stage deep drawing process using an artificial neural network(ANN). There has been no reported case of applying artificial neural network technology to the initial blank optimal design for a square case with large aspect ratio. The training data for ANN were obtained though simulation, and the model reliability was verified by performing comparative study with regression model using random sample test and goodness-of-fit test. Finally, the optimal design of the initial blank shape was performed through the verified ANN model.

타원체를 이용한 3축 센서의 실시간 보정 알고리듬 개발 (Development of the Calibration Algorithm of 3 Axis Vector Sensor Using Ellipsoid)

  • 황정문;김정한
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.643-651
    • /
    • 2015
  • Multi-axis magnetic and accelerometer sensor are widely used in consumer product such as smart phones. The vector output of multi-axis sensors have errors on each axis such as offset error, scale error, non-orthogonality. These errors cause many problems on the performance of the applications. In this paper, we designed the effective inline compensation algorithm for calibrating of 3 axis sensors using ellipsoid for mass production of multi-axis sensors. The outputs with those kinds of errors can be modeled by ellipsoid, and the proposed algorithm makes sequential mappings of the virtual ellipsoid to perfect sphere which is calibrated function of the sensor on three-dimensional space. The proposed calibrating process composed of four main stages and is very straightforward and effective. In addition, another imperfection of the sensor such as the drift from temperature can be easily inserted in each mapping stage. Numerical simulation and experimental results shows great performance of the proposed compensation algorithm.

다층 맞대기용접의 쉘 요소 기반 변형해석법 개발 (Development of Distortion Analysis Method for Multi-pass Butt-welding Based on Shell Element)

  • 하윤석;양진혁
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.54-59
    • /
    • 2010
  • Ship Blocks are assembled by welding, and among them, welding between large blocks (Pre-erection stage) is used as feature of butt. In this process, local material has a experience of thermal cycle and become finally shrunk. As for inconsistency of shrunk weldments and adjacent regions, ship structure would be deformed locally and globally. Thermal distortion analyses are done for control of these processes, and methodologies capable of ship block size among them are using 2-D shell element in FEM. A shell element takes charge of plate, so it has its thickness which is important for angular distortion by welding. By the way, a butt-welding consists normally of several passes, and weldment thickness are different at each pass. If a calculated final one-time welding shrinkage is acting on the shell element whose thickness is same as it of plate, then deformation value must be underestimated. This research developed a methodology that total deformation after multi-pass welding can be analyzed by one time at shell element having original thickness of its plate. We use the SDB thermal distortion analysis method and verified by several experiment. The both experimental and analysis results showed good agreements.

Design of Multi-time Programmable Memory for PMICs

  • Kim, Yoon-Kyu;Kim, Min-Sung;Park, Heon;Ha, Man-Yeong;Lee, Jung-Hwan;Ha, Pan-Bong;Kim, Young-Hee
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1188-1198
    • /
    • 2015
  • In this paper, a multi-time programmable (MTP) cell based on a $0.18{\mu}m$ bipolar-CMOS-DMOS backbone process that can be written into by using dual pumping voltages - VPP (boosted voltage) and VNN (negative voltage) - is used to design MTP memories without high voltage devices. The used MTP cell consists of a control gate (CG) capacitor, a TG_SENSE transistor, and a select transistor. To reduce the MTP cell size, the tunnel gate (TG) oxide and sense transistor are merged into a single TG_SENSE transistor; only two p-wells are used - one for the TG_SENSE and sense transistors and the other for the CG capacitor; moreover, only one deep n-well is used for the 256-bit MTP cell array. In addition, a three-stage voltage level translator, a VNN charge pump, and a VNN precharge circuit are newly proposed to secure the reliability of 5 V devices. Also, a dual memory structure, which is separated into a designer memory area of $1row{\times}64columns$ and a user memory area of $3rows{\times}64columns$, is newly proposed in this paper.

Electromagnetic Micro x-y Stage for Probe-Based Data Storage

  • Park, Jae-joon;Park, Hongsik;Kim, Kyu-Yong;Jeon, Jong-Up
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권1호
    • /
    • pp.84-93
    • /
    • 2001
  • An electromagnetic micro x-y stage for probe-based data storage (PDS) has been fabricated. The x-y stage consists of a silicon body inside which planar copper coils are embedded, a glass substrate bonded to the silicon body, and eight permanent magnets. The dimensions of flexures and copper coils were determined to yield $100{\;}\mu\textrm{m}$ in x and y directions under 50 mA of supplied current and to have 440 Hz of natural frequency. For the application to PDS devices, electromagnetic stage should have flat top surface for the prevention of its interference with multi-probe array, and have coils with low resistance for low power consumption. In order to satisfy these design criteria, conducting planar copper coils have been electroplated within silicon trenches which have high aspect ratio ($5{\;}\mu\textrm{m}$in width and $30{\;}\mu\textrm{m}$in depth). Silicon flexures with a height of $250{\;}\mu\textrm{m}$ were fabricated by using inductively coupled plasma reactive ion etching (ICP-RIE). The characteristics of a fabricated electromagnetic stage were measured by using laser doppler vibrometer (LDV) and dynamic signal analyzer (DSA). The DC gain was $0.16{\;}\mu\textrm{m}/mA$ and the maximum displacement was $42{\;}\mu\textrm{m}$ at a current of 180 mA. The measured natural frequency of the lowest mode was 325 Hz. Compared with the designed values, the lower natural frequency and DC gain of the fabricated device are due to the reverse-tapered ICP-RIE process and the incomplete assembly of the upper-sided permanent magnets for LDV measurements.

  • PDF

와주를 고려한 가공경로 선정에서의 유전알고르즘 접근 (Machining Route Selection with Subcontracting Using Genetic Algorithm)

  • 이규용;문치웅;김재균
    • 경영과학
    • /
    • 제17권2호
    • /
    • pp.55-65
    • /
    • 2000
  • This paper addresses a problem of machining route selection in multi-stage process with machine group. This problem is considered the subcontracting and the production in-house such as regular and overtime work. the proposed model is formulated as a 0-1 integer programming constraining the avaliable time of each machine for planning period and total overtimes. The objective of the model is to minimize the sum of processing cost, overtime cost, and subcontracting cost. To solve this model, a genetic algorithm(GA) approach is developed. The effectiveness of the proposed GA approach is evaluated through comparisons with the optimal solution obtained from the branch and bound. In results, the same optimal solution is obtained from two methods at small size problem, and the consistent solution is provided by the GA approach at large size problem. The advantage of the GA approach is the flexibility into decision-making process because of providing multiple machining routes.

  • PDF

단 달림 형상의 예비성형체 성형에 대한 전방압출과 업셋팅 공정의 비교 (Comparision between Forward Extrusion and Upsetting Process for Preform with Stepped Shape)

  • 송두호;박용복;김민응
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.82-85
    • /
    • 2000
  • In cold forging, the final product is usually given by multi-stage process and the preform with stepped shape can be manufactured through the various forging method. The forward extrusion and upsetting processes for preform with stepped shape have been analyzed by using the rigid-plastic finite element analysis code, InteFORM and compared for load and stroke according to ae reduction of weを An engineer should select the proper processes considering the capacity and the stroke of the corresponding press in the forging of the preform with stepped shape.

  • PDF