• Title/Summary/Keyword: Multi-Stage Hot Forging

Search Result 11, Processing Time 0.021 seconds

Process Design Molding with Precision Hot Forging of One-Way Clutch Inner Race (원 웨이 클러치 이너 레이스의 정밀 열간 단조 공정설계에 관한 연구)

  • Kim, Hwa-Jeong;Jin, Chul-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.83-90
    • /
    • 2018
  • In this research, we developed a process design hot-forging technology that precisely forms an inner race. The inner race transmits power to a one-way clutch of an automatic transmission and minimizes the CNC machining allowance. For a multi-stage hollow shape (inner race), we proposed several shapes of blocker and finisher for the precision hot-forging process and analyzed the forging process using DEFORM. The hot-forging process was optimized for several parameters, such as metal flow pattern, forging defect, and forming load. Blockers and finisher dies in the hot-forging process were designed to select optimal shapes from finite element analysis, and experiments were conducted to optimize the hot-forging process.

A Study on the Optimal Preform Shape Design using FEM and Genetic Algorithm in Hot Forging (열간단조에서 유한요소법과 유전 알고리즘을 이용한 예비성형체의 최적형상 설계 연구)

  • Yeom, Sung-Ho;Lee, Jeong-Ho;Woo, Ho-Kil
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.29-35
    • /
    • 2007
  • The main objective of this paper is to propose the optimal design method of forging process using genetic algorithm. Design optimization of forging process was doing about one stage and multi stage. The objective function is considered the filling of die. The chosen design variables are die geometry in multi stage and initial billet shape in one stage. We performed FE analysis to simulated forging process. The optimized preform and initial billet shape was obtained by genetic algorithm and FE analysis. To show the efficiency of GA method in forging problem are solved and compared with published results.

Finite Element Analysis of Multistage Hot Forging Process During Mold Cooling (금형 냉각을 고려한 다단 열간 단조 공정의 유한요소해석)

  • Choi, Du-Soon;Kang, Hyoungboo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.75-81
    • /
    • 2020
  • Multistage hot forging process enables mass production of various parts at a high speed, wherein, it is important to design the forging steps in an optimal way. Finite element methods are widely applied for optimizing the forging process design; however, they present inaccurate results due to the rapid change in the mold temperature during multistage hot forging. In this study, the temperature distributions of the mold in a steady state were calculated via heat transfer analysis during mold cooling. The flow stress and friction coefficient of the material were measured according to the temperature and were applied for numerical analysis of the multistage hot forging process. Eventually, the accuracy of the analysis results is verified by comparing these results with the experiments.

Comparison of Conventional Hot Forging and Thixoforging of Al 7075 Alloy According to Microstructures, Formability and Hardness (Al 7075합금의 열간단조와 반응고 단조에 있어서 조직, 성형성 및 경도 특성 비교)

  • Lee, Sang-Yong;Jeon, Jae-Il;Lee, Jeong-Hwan;Lee, Yeong-Seon;Sin, Pyeong-U
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.620-630
    • /
    • 1998
  • Conventional hot forging and thixoforging of Al 7075 alloy have been compared with respect to microstructures, formability and hardness. Two distinctive temperature-strain rate ranges for hot forging of Al 7075 alloy were observed from the results of simple compression tests with strain rates of 10-3∼101 sec-1 in the temperatures between $250^{\circ}C$ and $500^{\circ}C.$ In the dynamic recovery range (low temperature-high strain rate range) multi-stage forging was necessary to form a complex shape part due to the lack of formability. In the high temperature-low strain rate range, in which dynamic recrystallization takes place a complex shaped park could be formed by single-stage forging. About 50% cold working in the SIMA process was necessary to get a fine and homogeneous microstructures. Microstructural study suggest that thixoforged Al 7075 part has fine grains and homogeneous microstructures. Its hardness number is almost same to that of conventional hot forged part after aging treatment.

  • PDF

Finite Element Analysis of a Piercing and Trimming Process Having a Spring-Attached Die in Hot Former Forging (열간포머 단조공정중 스프링부착 금형을 가진 피어싱과 트리밍 동시공정의 유한요소해석)

  • 문호근;정재헌;전만수
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.536-541
    • /
    • 2003
  • In this paper, the rigid-viscoplastic finite element method is employed together with an iteratively force-balancing method to analyze a piercing and trimming process with a spring-attached die in hot former forging. An actual piercing and trimming process with a spring-attached die is investigated in detail and a generalized analysis model is proposed. A multi-stage hot former forging process is simulated under various spring constants. The analyzed results are discussed in order to investigate the effects of spring constants on the metal flow lines and the formed shapes. Then an optimal piercing and trimming process in hot former forging is devised.

A Study on Hot Deformation Behavior of Bearing Steels (베어링강의 고온변형 특성에 관한 연구)

  • Moon, Ho-Keun;Lee, Jae-Seong;Yoo, Sun-Joon;Joun, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.614-622
    • /
    • 2003
  • In this paper, the stress-strain curves of bearing steels at hot working conditions are obtained by hot compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are also obtained by hot tensile test with a Gleeble 1500 testing machine. Experiments are conducted under the various strain-rates and temperatures and their results are used to obtain the flow stress information. A rigid thermo-viscoplastic finite element method is applied to the multi-stage hot forging process in order to predict temperature distribution of workpiece. The experimental results and the analysis results are used to obtain an optimal hot forging condition.

Effectiveness Validation on Cold Multi-Stage Forging of Aluminum Inner Tie Rod Socket (알루미늄 이너 타이로드 소켓의 냉간다단단조 유효성 검증)

  • Park, Jae-Wook;Choi, Jong-Won;Jeong, Enn-Eun;Yoon, Il-Chae;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.49-55
    • /
    • 2022
  • Recently, the automobile industry has continued to demand lighter materials owing to international environmental regulations and increased convenience. To address this demand, aluminum parts have increased in popularity and are mainly developed and produced through hot forging and cold pressing. However, because this method has low yield and low production efficiency, a new manufacturing method is desirable. In this study, the water capacity efficiency of an aluminum inner tie rod socket was investigated using cold forging that provided a high yield and excellent production efficiency. Mechanical properties were derived through tensile testing of 6110A aluminum materials, and critical fracture factor and process analysis based on experimental data were carried out. The optimized process was applied as a prototype using cold multi-stage forging, and based on the derived results, the formability, productivity, and material efficiency of aluminum inner tie rod socket parts using this cold forging process was verified.

Optimization of Hot Forging Process Using Six Sigma Scheme and Computer Simulation Technology Considering Required Metal Flow Lines (6 시그마 기법과 컴퓨터 시뮬레이션 기술을 이용한 금속 유동선도를 고려한 열간 단조공정의 최적화)

  • Moon H. K.;Moon S. C.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.199-202
    • /
    • 2005
  • In this paper, the six sigma scheme is employed together with the rigid-viscoplastic finite element method to obtain the optimal metal flow lines in hot press forging. In general, the six sigma process is consisted of following five steps : define, measure, analyze, improve and control. Each step Is investigated in detail to meet customer's requirements through improvement of product quality. A forging simulator, AFDEX-2D, is used for analysis of the metal flow lines of a multi-stage hot forging process under various conditions of major factors, determined at each step of the six sigma process. The analyzed results are examined in order to reveal the effects of major factors on the metal flow lines and the formed shapes. The effects are used to find an optimal process and the optimal process with die is devised and tested. The comparison between required metal flow lines and experiments shows that the approach is effective for optimal process in hot forging design considering metal flow lines.

  • PDF

Finite Element Analysis of Compound Forging Processes (복합단조 공정의 유한요소해석)

  • 전만수;문호근;이민철;서대윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.546-550
    • /
    • 1996
  • A fully automatic computer simulation technique of axisymmetric multi-stage compound forging processes was presented in this paper. A penalty rigid-viscoplastic finite element method was employed together with an improved looping method for automatically remeshing with quadrilateral finite-elements only. An application example of six-stage axisymmetric forging processes involving one cold and two hot forging processes, two piercing processes and a sizing process was given with emphasis on automatically tracing the metal flow lines through the whole simulation.

  • PDF

Finite Element Analysis of a Multi-Stage Axisymmetric Forging Process Having A Spring-Attached Die (스프링부착 금형을 가진 다단 축대칭 단조공정의 유한요소해석-단조시뮬레이터 공정적용 사례(3))

  • 전만수;이석원;정재헌
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.93-100
    • /
    • 1996
  • In this paper, a computer simulationtechnique for the forging process having a spring-attached die was presented . The penalty rigid-thermoviscoplastic finite element method was empolyed together with an interatively force-balancing method, in which the convergence was achieved when the forming load and the spring reaction force are in equilibrium within the user-specified allowable accuracy. The force balance was controled by adjusting the velocity of the spring-attched die. th minimize the number of internations, a velocity estimating schemewas proposed. Two application examples found in the related company were given. In the first application example, the predicted metal folw lines were compared with the acturally forged ones. in the second example, a hot forging process with a spring-attached die was simulated and the analyzed results were discussed in order to investigated the effects of spring-attached dies on the metal flow lines and the forming loads.

  • PDF