• 제목/요약/키워드: Multi-Stage Drawing

검색결과 81건 처리시간 0.02초

다단계 디프드로잉가공에서의 소재형상설계 및 성형성 (The blank design and the formability for the multi-stage deep drawing process)

  • 박민호;김상진;서대교
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.111-118
    • /
    • 1995
  • A method of determining an optimum blank shape for the non circular deep drawing process is more investigated and applied to the balnk design for multi-stage deep drawn product. The forming procedure of two-stage deep drawing process is looked over and the method of determining a blank shape is proposed. In experimental research, a optimum blank and a optional rectangular blank were considered and we measured thickness strain distributions. We could predict a strain distribution and compare with a experimental strain distribution. Also, the strain distributions for the blank shapes, optimum and rectangular, were compared.

  • PDF

유한요소해석을 이용한 세장비가 큰 직사각컵 다단계 디프 드로잉-아이어닝 공정의 최적 금형설계 (Optimum Tool Design in a Multi-stage Rectangular Cup Drawing and Ironing Process with the Large Aspect Ratio by the Finite Element Analysis)

  • 김세호;김승호;허훈
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1077-1084
    • /
    • 2002
  • Optimum tool design is carried out fur a multi-stage rectangular cup deep-drawing and ironing process with the large aspect ratio. Finite element simulation is carried out to investigate deformation mechanisms with the initial design made by an expert. The analysis considers the deep drawing process with ironing for the thickness control in the cup wall. The analysis reveals that the difference of the drawing ratio within the cross section and the irregular contact condition produce non-uniform metal flow to cause wrinkling and severe extension. For remedy, the modification guideline is proposed in the design of the tool and the process. Analysis results confirm that the modified tool design not only improves the quality of a deep-drawn product but also reduces the possibility of failure. The numerical result shows fair coincidence with the experimental one. After tryouts of the tool shape, the rectangular cup has been produced in the transfer press.

세장비가 큰 사각컵 디프 드로잉의 유한요소 해석 (Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio)

  • 구태완;하병국;송우진;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF

세장비가 큰 다단계 사각형 디프드로잉 성형공정해석 및 금형설 (FE Analysis and Die Design of The Multi-stage Rectangular Deep Drawing Process with the Large Aspect Ratio)

  • 김홍주;구태완;강범수
    • 소성∙가공
    • /
    • 제10권6호
    • /
    • pp.456-464
    • /
    • 2001
  • Deep drawing and ironing are tile major process today in manufacturing of aluminum alloy battery case used in cellular phone. Most of these process require multi-stage ironing following the deep drawing and redrawing processes. The practical aspects of this technology are well known and gained through extensive experiment and production know-how. However, the fundamental aspects of these processes are relatively less known. Thus, it is expected that process analysis using FEM techniques would provide additional detailed information that could be utilized to improve the process condition. This paper illustrates the application of process modeling to deep drawing and redrawing operations. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product. A commercially available finite element code LS-DYNA3D was used to simulate deep drawing and redrawing operations.

  • PDF

유한요소해석을 이용한 세장비가 큰 직사각컵 다단계 성형공정의 금형설계 - 아이어닝 해석과 실험적 검증 (Tool Design in a Multi-stage Rectangular Cup Drawing Process with the Large Aspect Ratio by the Finite Element Analysis - Ironing Analysis and Experimental Verifications)

  • 김세호;김승호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2001
  • Examination of the die design is carried out for a multi-stage rectangular cup drawing process with the large aspect ratio with the aid of the finite element analysis. The analysis considers the deep drawing process with the ironing process for the thickness control in the cup wall. Simulation is performed to investigate the deformation mechanism in the initial design and the modified design. The analysis clarifies that the irregular cross section and the irregular contact condition produces unfavorable deformation. The analysis results show that the modified design improves the quality of a deep-drawn product with the low possibility of failure. The analysis result also shows good agreement with the experimental one.

  • PDF

니켈-수소 2차 전지용 고세장비의 직사각 컵에 대한 성형공정 설계 및 유한요소해석 (Process Design and Finite Element Analysis of Rectangular Cup used for Ni-MH Battery with High Aspect Ratio)

  • 구태완;김화영;송우진;강범수
    • 소성∙가공
    • /
    • 제17권3호
    • /
    • pp.170-181
    • /
    • 2008
  • The shape of rectangular cup used for Ni-MH(Nickel-coated Metal Hydrogen) battery for hybrid car looks quite simple, but the forming process of extruding and setting up process design are highly difficult. Furthermore, there are few concrete reports on the rectangular deep drawn cup as part of hybrid vehicles till now. In this study, process design for rectangular cup in the multi-stage deep drawing process is carried out, and FE analysis is also preformed based on the result of the process design. From the simulation result, some unexpected problems such as earing, wrinkling and excessive thickness changes of the intermediate blank occurred. To overcome these failures, a series of modification for punch shape in the forming process design are completed and applied. Considering the modified punch shape in the multi-stage deep drawing process, additional FE analysis is also carried out and the simulation result is verified in view of the deformed shape, thickness change and effective strain distribution. The result of FE analysis with the improved process design confirmed not only reducing thinning of wall and possibilities of failure but also improving the quality of drawing product through the modification of punch shape.

고탄소강의 연속 건식 신선 공정에서 선재의 온도 예측 기법 개발 (Development of Wire Temperature Prediction Method in a Continuous Dry Wire Drawing Process Using the High Carbon Steel)

  • 김영식;김동환;김병민;김민안;박용민
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.330-337
    • /
    • 2001
  • Wire drawing process of the high carbon steel with a high speed is usually conducted at room temperature using a number of passes or reductions through consequently located dies. In multi-stage drawing process, temperature rise in each pass affects the mechanical properties of final product such as bend, twist and tensile strength. Also, this temperature rise during the deformation is the reason that the wire in drawing process is broken by the embrittlement due to rapid strain aging effect. This paper presents the estimation of the wire temperature for the multi-stage wire drawing process. Using the proposed calculation method of wire temperature, temperature rise at deformation zone as well as temperature drop in block considering the heat transfer between the block and wire were calculated. As these calculated wire temperatures were applied to the real industrial fields, it was known that the calculated results were in a good agreement with the measured wire temperature.

직사각 컵 성형을 위한 다단 디프드로잉 공정의 실험적 연구 (Experimental Study on Non-Axisymmetric Rectangular Cup using Multi-Stage Deep Drawing Process)

  • 구태완;박중원;허성찬;강범수
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.253-262
    • /
    • 2010
  • For multi-stage deep drawing process including ironing operation and biaxial forming in this study, tool developments are achieved, and the developed tool sets are applied to experimental investigations. In process and tool designs, a contact condition between intermediate blank and lower die is considered as the sequential one. In this study, the material used is cold-rolled thin sheet (SPCE) with the initial thickness of 0.4mm. From the experimental approaches, several failures such as tearing, localized thickening and thinning, are observed. To solve these failures, the contact surface on the lower die is modified. As the experimental results by applying the modified lower die, it is investigated that the failures are not occurred, and the excessive deformation behavior due to the thinning and thickening effects are decreased. Furthermore, the thickness distributions on the major axis and the minor axis of each intermediate blank are investigated to be already satisfied the target (ironing) thickness, respectively. By this systematic approach, it is confirmed that the experimental results show good agreements with the designed and required configuration of each deformed and final products.

국부가열을 이용한 박판의 사각통 디이프 드로잉 성형에 관한 연구 (A Study on the Drawability of Rectangular Deep Drawing of Sheet Metal using Local Heating)

  • 박동환;김창호;강성수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.209-214
    • /
    • 1995
  • This paper describes that the effects of punch speed and temperatures of the die and the blank holder on the drawability are examined. Up to now, multi-stage of dies sets have been used generally at room temperature in deep drawing of rectangular shaped components. But using local heating, it is shown that one stage of die set was capable of deep drawing and the drawability was increased and sheet thickness of component was drawn somewhat uniformly. Rectangular deep drawing experiments on two kinds of stainless steel STS316L, STS430 of 1.0 mm thickness have been conducted using local heating. The limiting drawing height can be increased by heating the die and the blank holder up to 100 .deg. C at STS316L. Commercial lubricants hadn't an effect on drawability in rectangular deep drawing, but vinyl and teflon film had an effect on it.

  • PDF

타원형 다단 딥 드로잉 제품의 성형성 향상을 위한 초기 소재 형상 최적 설계 (Optimization of Initial Blank Shape of Multi-stage Deep Drawing for Improvement of Formability)

  • 이사랑;박상민;홍석무
    • 한국산학기술학회논문지
    • /
    • 제17권10호
    • /
    • pp.696-701
    • /
    • 2016
  • 다단계 딥 드로잉(multi-stage deep drawing)은 산업현장에서 대형의 금속 제품 뿐만 아니라 소형의 제품에 까지 많은 제품으로 확대되고 있는 제조 공정 중 하나이다. 예를 들어, 스마트 폰에 사용되는 USB-C형 소켓은 매우 작고, 정밀하며 세장비가 큰 부품이며, 이 제품은 타원형 다단계 딥드로잉 방법으로 제조된다. 다단계 딥 드로잉에 최종 제품의 두께 분포를 보장하기 위해서 다단계 딥드로잉 전체 공정에서 제품의 두께 분포가 균일하게 유지되어야 한다. 따라서 첫 번째 드로잉 작업 후에 타원형 제품의 장변과 단변쪽 측벽의 높이 차를 최소화하는 것은 최종 제품의 균일한 두께를 보장하는 가장 중요한 공정 설계 인자이다. 본 연구에서는 첫 번째 드로잉 공정 후 소재가 균일한 높이를 지속적으로 유지될 수 있도록 하기 위해서 유한요소해석을 기반으로 초기의 타원형 소재 형상 결정에 대한 최적 설계를 수행하였다. 최적 설계된 초기 블랭크 형상으로 성형된 제품의 경우 전체 균일한 두께 분포를 가질 뿐만 아니라 드로잉 후 제품의 장변과 단변의 높이 단차가 최소화 되었다. 최종적으로 최적 설계로 예측된 초기 소재 형상은 실제 실험 결과와 비교하여 검증되었고, 매우 양호한 결과의 일치를 보여주었다.