• Title/Summary/Keyword: Multi-Span

Search Result 384, Processing Time 0.022 seconds

Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (1) Study on Aerodynamic Resistance of Tomato Canopy through Wind Tunnel Experiment - (공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (1) 풍동실험을 통한 토마토 식물군의 공기저항 연구 -)

  • Lee In-Bok;Yun Nam-Kyu;Boulard Thierry;Roy Jean Claude;Lee Sung-Hyoun;Kim Gyoeng-Won;Lee Seung-Kee;Kwon Soon-Hong
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 2006
  • A computational fluid dynamics (CFD) numerical model has been developed to effectively study the ventilation efficiency of multi-span greenhouses with internal crops. As the first step of the study, the internal plants of the CFD model had to be designed as a porous media because of the complexity of its physical shapes. In this paper, the results of the wind tunnel tests were introduced to find the aerodynamic resistance of the plant canopy. The Seogun tomato was used for this study which made significant effects on thermal and mass exchanges with the adjacent air as well as internal airflow resistance. With the main factors of wind speed, static pressure, and density of plant canopy, the aerodynamic resistance factor was statically found. It was finally found to be 0.26 which will be used later as an input data of the CFD model. Moreover, the experimental procedure of how to find the aerodynamic resistance of various plants using, wind tunnel was established through this study.

Flexural & Fatigue Evaluation of Link Slab for Continuous Girder-Type Precast Modular Bridges (거더형식 프리캐스트 모듈러교량 연속화 지점부에 적용되는 연결슬래브의 휨성능 및 피로성능 평가)

  • Joo, Bong-Chul;Song, Jae-Joon;Lee, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.517-528
    • /
    • 2013
  • The modular technology has been already applied in automotive industry, plant and shipbuilding industry. Recently, the modular technology was applied in bridge construction. The modular bridge is different from the existing precast bridges in terms of standardized design that the detailed design of members is omitted by using the standard modules; the design of the modular bridge is completed by only assembling the standard modules without design in member level. The girder-type precast modular bridge has been developed as a simply supported bridge. The girder-type precast modular bridge could be applied to the multi-span bridges through the continuity method. The continuity of the girder-type precast modular bridge is achieved by using the link slab which is easy to construction and appropriate to the rapid construction. The link slabs have been used as the type of reinforced concrete structure in US from the 1950's. In 2000's, the link slab using the engineered cementitious concrete (ECC link slab) has been developed. In this study, the RC type link slab which is more reproducible and economic relative to the ECC link slab was used for the continuity of the girder-type precast modular bridges, and the construction detail of RC type link slab was modified. In addition, the modified iterative design method of RC type link slab was proposed in this study. To verify the proposed design method, the flexural tests were conducted using the RC type link slab specimens. Also, the fatigue test using the mock-up specimen was conducted with cyclic loading condition up to two million cycles.

The Experiment for Performance Evaluation of Column-rafter-purlin Connections of an Arch-type Plastic Multi-span Greenhouse (플라스틱 연동온실 기둥-서까래-도리 접합부의 성능 평가 실험)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho;Kim, Seung-yu
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.473-479
    • /
    • 2020
  • In this study, the structural experiment was conducted with two types of specimens to investigate the mechanical behavior of the column-rafter-purlin connection of an arch-type greenhouse under monotonic loading. Based on the experimental results, the flexural performance was analyzed for two types of connections, and connection classification was attempted. Type B showed 77% of flexural performance compared to Type A, and both types showed that the rigidity and flexural strength did not reach the level of the full rigid. The behavior of the column-rafter-purlin connection was dominated by local buckling due to deformation of the weld and fasteners. As a result of connection classification by AISC standard, both Type A and B connections showed a result that did not meet the rigid connection performance assumed during design, and were classified as simple connection. Therefore, the connection performance evaluation and classification results show that the greenhouse design should be made in consideration of connection performance and in order to design a reliable greenhouse structure, a study on establishing clear design standards for the greenhouse connection is necessary.

How sun spot activity affects on positioning accuracy?: Case study of solar storm (태양 흑점활동이 측위오차에 미치는 영향: 태양폭풍 사례연구)

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.27-28
    • /
    • 2011
  • A solar flares have the 11-year cycle and release a large energy which may produce coronal mass ejections (CME). The NOAA (National Oceanic and Atmospheric Administration) predicted that the sun spot activity will be maximized in 2013-2014. A strong solar flare can cause the disturbance of global positioning system including various communication of TV, radio broadcasting. The actual solar storm in 1989 caused power outages in Canada during 9 hours and about 600 million people had experienced a blackout. Such a solar storm can shorten the GPS satellite's life span about 5 to 10 years which can be resulted in economic loss considering the amount of multi-billion won. This paper analyzed the recent solar storm of X-class occurred on 15th of February about 10:45 this year that was reached Korea (Bohyun observatory) on 18th of February about 10:30 (local time), and compared with the data of before and after a week. The proton data of 18th of February considered that the solar strom reached on earth showed a fluctuation compared to the data of before and after a week. The positioning results at Daejeon also showed higher positioning error compared to the data of before and after a week results.

  • PDF

Development of Raising Device for Greenhouse Column Using a Pneumatic Cylinder (공압실린더를 이용한 온실기둥 상승장치 개발)

  • Lee, Hyun June;Park, Eun Mi;Shin, Dong Chang;Choe, Jung Seob;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.206-212
    • /
    • 2018
  • As many consumers prefer good quality food, farms have used various facilities to cultivate products for satisfying their desires. Among them, the most representative facilities are plastic and glass multi-span greenhouse. The height of both plastic greenhouse and glass greenhouse is around three meters high in Korea. As a result, the crop productivity is limited. The solution is to increase the height of the greenhouses to improve the greenhouses' environment. The device for raising columns consists of a stop device, a pneumatic cylinder, and a vertical member. Pneumatic cylinders were designed with a diameter of 160 mm and a stroke length of 50 mm, taking into consideration the safety factor of 1.5. In addition, the air flow was controlled by nozzle to achieve a time of less than 30 seconds per stroke. It was calculated that $21.5L{\cdot}min^{-1}$ of air was needed to complete in less than 30 seconds. Accordingly, the diameter of the nozzle is designed to be 0.5 mm. When the pressure was 0.9 MPa, the average raising force was 13,805N, which was close to the calculated value of 15,612N. The field test results show that any inconsistency in the row columns was not generated. and that it is considered applicable to the actual glass and plastic greenhouses.

Measurement of two-dimensional vibration and calibration using the low-cost machine vision camera (저가의 머신 비전 카메라를 이용한 2차원 진동의 측정 및 교정)

  • Kim, Seo Woo;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.99-109
    • /
    • 2018
  • The precision of the vibration-sensors, contact or non-contact types, is usually satisfactory for the practical measurement applications, but a sensor is confined to the measurement of a point or a direction. Although the precision and frequency span of the low-cost camera are inferior to these sensors, it has the merits in the cost and in the capability of simultaneous measurement of a large vibrating area. Furthermore, a camera can measure multi-degrees-of-freedom of a vibrating object simultaneously. In this study, the calibration method and the dynamic characteristics of the low-cost machine vision camera as a sensor are studied with a demonstrating example of the two-dimensional vibration of a cantilever beam. The planar image of the camera shot reveals two rectilinear and one rotational motion. The rectilinear vibration motion of a single point is first measured using a camera and the camera is experimentally calibrated by calculating error referencing the LDV (Laser Doppler Vibrometer) measurement. Then, by measuring the motion of multiple points at once, the rotational vibration motion and the whole vibration motion of the cantilever beam are measured. The whole vibration motion of the cantilever beam is analyzed both in time and frequency domain.

How sun spot activity affects on positioning accuracy?: Case study of solar storm (태양 흑점활동이 측위오차에 미치는 영향: 태양폭풍 사례연구)

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.477-482
    • /
    • 2011
  • Solar flares have the 11-year cycle and release a large energy which may produce coronal mass ejections (CME). The NOAA (National Oceanic and Atmospheric Administration) predicted that the sun spot activity will be maximized in 2013-2014. A strong solar flare can cause the disturbance of global positioning system including various communication of TV, radio broadcasting. The actual solar storm in 1989 caused power outages in Canada during 9 hours and about 600 million people had experienced a blackout. Such a solar storm can shorten the GPS satellite's life span about 5 to 10 years which can resulted in economic loss considering the amount of multi-billion won. This paper analyzed the influence of recent X-class solar storm occurred on 15th of February about 10:45 this year that was reached Korea (Bohyun observatory) on 18th of February about 10:30 (01:30 - UTC), and compared with the data before and after a week. The proton data of 18th of February considered that the solar storm reached on earth showed a fluctuation compared to the data before and after a week. The positioning results at Daejeon and Seoul of Korea also showed higher positioning error compared to the data before and after a week results.

An Efficient Data Block Replacement and Rearrangement Technique for Hybrid Hard Disk Drive (하이브리드 하드디스크를 위한 효율적인 데이터 블록 교체 및 재배치 기법)

  • Park, Kwang-Hee;Lee, Geun-Hyung;Kim, Deok-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Recently heterogeneous storage system such as hybrid hard disk drive (H-HDD) combining flash memory and magnetic disk is launched, according as the read performance of NAND flash memory is enhanced as similar to that of hard disk drive (HDD) and the power consumption of NAND flash memory is reduced less than that of HDD. However, the read and write operations of NAND flash memory are slower than those of rotational disk. Besides, serious overheads are incurred on CPU and main memory in the case that intensive write requests to flash memory are repeatedly occurred. In this paper, we propose the Least Frequently Used-Hot scheme that replaces the data blocks whose reference frequency of read operation is low and update frequency of write operation is high, and the data flushing scheme that rearranges the data blocks into the multi-zone of the rotation disk. Experimental results show that the execution time of the proposed method is 38% faster than those of conventional LRU and LFU block replacement schemes in I/O performance aspect and the proposed method increases the life span of Non-Volatile Cache 40% higher than those of conventional LRU, LFU, FIFO block replacement schemes.

A Study on the Ward Module according to the External Design of the Hospital (병원 외주부 디자인에 따른 병실모듈 연구)

  • Lee, Hyunjin;Park, Wonbae
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.27 no.3
    • /
    • pp.71-78
    • /
    • 2021
  • Purpose: It is important to plan the ward module at a time when the size of beds, the floor area, and the construction budget are all set prior to the hospital design. In this context this study aims (1) to derive various factors affecting the ward module, and (2) to analyze the appropriate room module according to the type. Methods: Design factors related to hospital modules are derived through precedential studies, and the types of ward elevation are classified by reviewing the drawings of 18 case hospitals. And the detailed dimensions and area of the derived elements are analyzed. Results: The X-axis modules of the ward are switched to long span structural columns of 9.9 m, 12.6 m and 13.2 m, but the ward modules still represent 6.6 m. The Y-axis module of the ward shows a dimension of 9 to 9.9m in the process of changing a multi-person room into a four-person room. Type A of curtain wall with columns located on the wall of the room and type B of curtain wall located in the center of the room are analyzed due to their variations. The square window type, which forms the elevation of the square window by exposing the columns to the elevation, and the outframe type, which protrudes from the structural columns and beams, have elevation designs limited. There are, however, no obstacles to the interior space of the hospital room, so the wall composition and furniture arrangement are expected to be free. The ward area of Curtain Wall Type A, which can secure an effective area of 5.9m*5.0m, are 52.1m2. The Curtain Wall Type A, Square window type, and the outframe type are 49.8m2. Implications: As part of the hospital standard module plan for economical and reasonable hospital building planning, a type was proposed in this study in conjunction with the external design. It is hoped that it be a base for standard module research linked together to the Central Treatment department, Outpatient department and underground parking lot.

Relationship Analysis of Reference Evapotranspiration and Heating Load for Water-Energy-Food Nexus in Greenhouse (물-에너지-식량 넥서스 분석을 위한 시설재배지의 기준작물증발산량과 난방 에너지 부하 관계 분석)

  • Kim, Kwihoon;Yoon, Pureun;Lee, Yoonhee;Lee, Sang-Hyun;Hur, Seung-Oh;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.23-32
    • /
    • 2019
  • Increasing crop production with the same amount of resources is essential for enhancing the economy in agriculture. The first prerequisite is to understand relationships between the resources. The concept of WEF (Water-Energy-Food) nexus analysis was first introduced in 2011, which helps to interpret inter-linkages among the resources and stakeholders. The objective of this study was to analyze energy-water nexus in greenhouse cultivation by estimating reference evapotranspiration and heating load. For the estimation, this study used the physical model to simulate the inside temperature of the agricultural greenhouse using heating, solar radiation, ventilated and transferred heat losses as input variables. For estimating reference evapotranspiration and heating load, Penman-Monteith equation and seasonal heating load equation with HDH (Heating Degree-Hour) was applied. For calibration and validation of simulated inside temperature, used were hourly data observed from 2011 to 2012 in multi-span greenhouse. Results of the simulation were evaluated using $R^2$, MAE and RMSE, which showed 0.75, 2.22, 3.08 for calibration and 0.71, 2.39, 3.35 for validation respectively. When minimum setting temperature was $12^{\circ}C$ from 2013 to 2017, mean values of evapotranspiration and heating load were 687 mm/year and 2,147 GJ/year. For $18^{\circ}C$, Mean values of evapotranspiration and heating load were 707 mm/year and 5,616 GJ/year. From the estimation, the relationship between water and heat energy was estimated as 1.0~2.6 GJ/ton. Though additional calibrations with different types of greenhouses are necessary, the results of this study imply that they are applicable when evaluating resource relationship in the greenhouse cultivation complex.