• Title/Summary/Keyword: Multi-Sensor Image

Search Result 286, Processing Time 0.03 seconds

Applicability of Satellite SAR Imagery for Estimating Reservoir Storage (저수지 저수량 추정을 위한 위성 SAR 자료의 활용성)

  • Jang, Min-Won;Lee, Hyeon-Jeong;Kim, Yi-Hyun;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.7-16
    • /
    • 2011
  • This study discussed the applicability of satellite SAR (Synthetic Aperture Radar) imagery with regard to reservoir monitoring, and tried the extraction of reservoir storage from multi-temporal C-band RADARSAT-1 SAR backscattering images of Yedang and Goongpyeong agricultural reservoirs, acquired from May to October 2005. SAR technology has been advanced as a complementary and alternative approach to optical remote sensing and in-situ measurement. Water bodies in SAR imagery represent low brightness induced by low backscattering, and reservoir storage can be derived from the backscatter contrast with the level-area-volume relationship of each reservoir. The threshold segmentation over the routine preprocessing of SAR images such as speckle reduction and low-pass filtering concluded a significant correlation between the SAR-derived reservoir storage and the observation record in spite of the considerable disagreement. The result showed up critical limitations for adopting SAR data to reservoir monitoring as follows: the inappropriate specifications of SAR data, the unreliable rating curve of reservoir, the lack of climatic information such as wind and precipitation, the interruption of inside and neighboring land cover, and so on. Furthermore, better accuracy of SAR-based reservoir monitoring could be expected through different alternatives such as multi-sensor image fusion, water level measurement with altimeters or interferometry, etc.

Multi-robot Mapping Using Omnidirectional-Vision SLAM Based on Fisheye Images

  • Choi, Yun-Won;Kwon, Kee-Koo;Lee, Soo-In;Choi, Jeong-Won;Lee, Suk-Gyu
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.913-923
    • /
    • 2014
  • This paper proposes a global mapping algorithm for multiple robots from an omnidirectional-vision simultaneous localization and mapping (SLAM) approach based on an object extraction method using Lucas-Kanade optical flow motion detection and images obtained through fisheye lenses mounted on robots. The multi-robot mapping algorithm draws a global map by using map data obtained from all of the individual robots. Global mapping takes a long time to process because it exchanges map data from individual robots while searching all areas. An omnidirectional image sensor has many advantages for object detection and mapping because it can measure all information around a robot simultaneously. The process calculations of the correction algorithm are improved over existing methods by correcting only the object's feature points. The proposed algorithm has two steps: first, a local map is created based on an omnidirectional-vision SLAM approach for individual robots. Second, a global map is generated by merging individual maps from multiple robots. The reliability of the proposed mapping algorithm is verified through a comparison of maps based on the proposed algorithm and real maps.

Evaluation of Geometric Modeling for KOMPSAT-1 EOC Imagery Using Ephemeris Data

  • Sohn, Hong-Gyoo;Yoo, Hwan-Hee;Kim, Seong-Sam
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.218-228
    • /
    • 2004
  • Using stereo images with ephemeris data from the Korea Multi-Purpose Satellite-1 electro-optical camera (KOMPSAT-1 EOC), we performed geometric modeling for three-dimensional (3-D) positioning and evaluated its accuracy. In the geometric modeling procedures, we used ephemeris data included in the image header file to calculate the orbital parameters, sensor attitudes, and satellite position. An inconsistency between the time information of the ephemeris data and that of the center of the image frame was found, which caused a significant offset in satellite position. This time inconsistency was successfully adjusted. We modeled the actual satellite positions of the left and right images using only two ground control points and then achieved 3-D positioning using the KOMPSAT-1 EOC stereo images. The results show that the positioning accuracy was about 12-17 m root mean square error (RMSE) when 6.6 m resolution EOC stereo images were used along with the ephemeris data and only two ground control points (GCPs). If more accurate ephemeris data are provided in the near future, then a more accurate 3-D positioning will also be realized using only the EOC stereo images with ephemeris data and without the need for any GCPs.

  • PDF

Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures

  • Lee, Jong Jae;Fukuda, Yoshio;Shinozuka, Masanobu;Cho, Soojin;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.373-384
    • /
    • 2007
  • For structural health monitoring (SHM) of civil infrastructures, displacement is a good descriptor of the structural behavior under all the potential disturbances. However, it is not easy to measure displacement of civil infrastructures, since the conventional sensors need a reference point, and inaccessibility to the reference point is sometimes caused by the geographic conditions, such as a highway or river under a bridge, which makes installation of measuring devices time-consuming and costly, if not impossible. To resolve this issue, a visionbased real-time displacement measurement system using digital image processing techniques is developed. The effectiveness of the proposed system was verified by comparing the load carrying capacities of a steel-plate girder bridge obtained from the conventional sensor and the present system. Further, to simultaneously measure multiple points, a synchronized vision-based system is developed using master/slave system with wireless data communication. For the purpose of verification, the measured displacement by a synchronized vision-based system was compared with the data measured by conventional contact-type sensors, linear variable differential transformers (LVDT) from a laboratory test.

Spectal Characteristics of Dry-Vegetation Cover Types Observed by Hyperspectral Data

  • Lee Kyu-Sung;Kim Sun-Hwa;Ma Jeong-Rim;Kook Min-Jung;Shin Jung-Il;Eo Yang-Dam;Lee Yong-Woong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.175-182
    • /
    • 2006
  • Because of the phenological variation of vegetation growth in temperate region, it is often difficult to accurately assess the surface conditions of agricultural croplands, grasslands, and disturbed forests by multi-spectral remote sensor data. In particular, the spectral similarity between soil and dry vegetation has been a primary problem to correctly appraise the surface conditions during the non-growing seasons in temperature region. This study analyzes the spectral characteristics of the mixture of dry vegetation and soil. The reflectance spectra were obtained from laboratory spectroradiometer measurement (GER-2600) and from EO-1 Hyperion image data. The reflectance spectra of several samples having different level of dry vegetation fractions show similar pattern from both lab measurement and hyperspectral image. Red-edge near 700nm and shortwave IR near 2,200nm are more sensitive to the fraction of dry vegetation. The use of hyperspectral data would allow us for better separation between bare soils and other surfaces covered by dry vegetation during the leaf-off season.

MULTI-POINT MEASUREMENT OF STRUCTURAL VIBRATION USING PATTERN RECOGNITION FROM CAMERA IMAGE

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jin-Ho;Park, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.704-711
    • /
    • 2010
  • Modal testing requires measuring the vibration of many points, for which an accelerometer, a gab sensor and laser vibrometer are generally used. Conventional modal testing requires mounting of these sensors to all measurement points in order to acquire the signals. However, this can be disadvantageous because it requires considerable measurement time and effort when there are many measurement points. In this paper, we propose a method for modal testing using a camera image. A camera can measure the vibration of many points at the same time. However, this task requires that the measurement points be classified frame by frame. While it is possible to classify the measurement points one by one, this also requires much time. Therefore, we try to classify multiple points using pattern recognition. The feasibility of the proposed method is verified by a beam experiment. The experimental results demonstrate that we can obtain good results.

Application of Deep Learning to Solar Data: 1. Overview

  • Moon, Yong-Jae;Park, Eunsu;Kim, Taeyoung;Lee, Harim;Shin, Gyungin;Kim, Kimoon;Shin, Seulki;Yi, Kangwoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2019
  • Multi-wavelength observations become very popular in astronomy. Even though there are some correlations among different sensor images, it is not easy to translate from one to the other one. In this study, we apply a deep learning method for image-to-image translation, based on conditional generative adversarial networks (cGANs), to solar images. To examine the validity of the method for scientific data, we consider several different types of pairs: (1) Generation of SDO/EUV images from SDO/HMI magnetograms, (2) Generation of backside magnetograms from STEREO/EUVI images, (3) Generation of EUV & X-ray images from Carrington sunspot drawing, and (4) Generation of solar magnetograms from Ca II images. It is very impressive that AI-generated ones are quite consistent with actual ones. In addition, we apply the convolution neural network to the forecast of solar flares and find that our method is better than the conventional method. Our study also shows that the forecast of solar proton flux profiles using Long and Short Term Memory method is better than the autoregressive method. We will discuss several applications of these methodologies for scientific research.

  • PDF

Translation- and Rotation-Invariant Fingerprint Authentication Based on Gabor Features (Gabor 특징에 기반한 이동 및 회전 불변 지문인증)

  • 김종화;조상현;성효경;최홍문
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.901-904
    • /
    • 2000
  • A direct authentication from gray-scale image, instead of the conventional multi-step preprocessing, is proposed using Gabor filter-based features from the gray-scale fingerprint around core point. The core point is located as a reference point for the translation invariant matching. And its principal symmetry axis is detected for the rotation invariant matching from its neighboring region centered at the core point. And then fingerprint is divided into non-overlapping blocks with respect to the core point and features are directly extracted form the blocked gray level fingerprint using Gabor filter. The proposed fingerprint authentication is based on the Euclidean distance between the corresponding Gabor features of the input and the template fingerprints. Experiments are conducted on 300${\times}$300 fingerprints obtained from a CMOS sensor with 500 dpi resolution, and the proposed method could lower the False Reject Rate(FRR) to 18.2% under False Acceptance Rate(FAR) of 0%.

  • PDF

Rapid 3D Mapping Using LIDAR System (LIDAR 시스템을 이용한 근 실시간 3D 매핑)

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun;Kim, Kee-Tae;Kim, Gi-Hong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.55-61
    • /
    • 2004
  • Rapid developments in sensor technologies now allow the generation of multi-source topographical data. For many applications, however, the geospatial information provided by individual sensors is not complete, precise, and consistent. To solve these inherent problems, additional diverse sources of complementary data can be used and fused. In this paper, the experiment was done for generation of 3D orthoimage data using LIDAR data and digital camera image. And the results show that 3D orthoimage can be used for the flood monitoring.

Multi-Sensor Image Fusion for Poisson Blending (포아송 블랜딩을 통한 다중센서 영상 결합)

  • Kim, Sung-Yong;Kang, Hang-Bong
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.262-263
    • /
    • 2012
  • 다중 센서의 영상, 예를 들어 가시광 영상과 적외선 영상은 서로 다른 특징을 가지고 있기 때문에 본 논문에서는 IR 영상의 특징을 보존한 새로운 혼합기법을 제안하다. 이러한 혼합기법은 의료 영상, 보안 영상 등에서 매우 중요하고 다양하게 다루어진다. 일반적인 혼합기법을 사용하게 되면 영상간의 특색 때문에 혼합 시 조화롭지 못하는 문제점을 가진다. 이러한 문제점을 해결하기 위해서 본 논문에서는 중요도 맵을 추출하고 그 영역에 대하여 포아송 블랜딩을 통해 두 개의 다른 특징을 가시광 영상을 혼합한다. 제안한 알고리즘은 기존의 연구와 다르게 혼합할 영역을 수동으로 지정하는 것이 아니라 자동적으로 추출하고, 가시광 영상에 IR 영상에서만 검출되는 영역을 결합한 새로운 결과를 얻을 수 있었다.

  • PDF