• Title/Summary/Keyword: Multi-Sensitivity Model

Search Result 219, Processing Time 0.024 seconds

Metamodel based multi-objective design optimization of laminated composite plates

  • Kalita, Kanak;Nasre, Pratik;Dey, Partha;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.301-310
    • /
    • 2018
  • In this paper, a multi-objective multiparameter optimization procedure is developed by combining rigorously developed metamodels with an evolutionary search algorithm-Genetic Algorithm (GA). Response surface methodology (RSM) is used for developing the metamodels to replace the tedious finite element analyses. A nine-node isoparametric plate bending element is used for conducting the finite element simulations. Highly accurate numerical data from an author compiled FORTRAN finite element program is first used by the RSM to develop second-order mathematical relations. Four material parameters-${\frac{E_1}{E_2}}$, ${\frac{G_{12}}{E_2}}$, ${\frac{G_{23}}{E_2}}$ and ${\upsilon}_{12}$ are considered as the independent variables while simultaneously maximizing fundamental frequency, ${\lambda}_1$ and frequency separation between the $1^{st}$ two natural modes, ${\lambda}_{21}$. The optimal material combination for maximizing ${\lambda}_1$ and ${\lambda}_{21}$ is predicted by using a multi-objective GA. A general sensitivity analysis is conducted to understand the effect of each parameter on the desired response parameters.

Some French and German Movies for the Multi-cultural Education at Schools (학교에서의 다문화교육을 위한 프랑스와 독일의 영화)

  • HAN, Yong-taek
    • Cross-Cultural Studies
    • /
    • v.19
    • /
    • pp.205-232
    • /
    • 2010
  • The purpose of this paper is to examine the possibility of application of some French and German movies to teaching of multi-culture in elementary, middle and high schools. Three different films are selected. (2005), a French animation film directed by B?n?dicte Galup and Michel Ocelot, is appropriate for the education of understanding cultural relativity and improving multi-cultural sensitivity in elementary school. is a French short film directed by Walter Salles and Daniela Thomaso and included in omnibus style film (2006). This short film relating a story of an immigrated woman who leaves her baby in a cr?che and travels through Paris to work for a bourgeois mother can be used for developing a bond of sympathy between natives and immigrants. It is recommended for the class of junior high school. Finally (2007), a German film directed by Fatih Akin, provide a learning model for the education of multi-culture in high school classrooms. The cinematographic aesthetic of this film is focused on a process of reconciliation with others over the cultural, racial, national and generational differences. Analyzing the structure of the film and being guided by teachers the students can understand better in improving abilities to understand others.

Optimum Design of Welding Pitch Considering Fatigue Life of Spot Welding Nuggets (점용접부의 피로수명을 고려한 용접 피치 최적설계)

  • Lee, Sang-Beom;Jeon, Sang-Hoon;Yim, Hong-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.179-185
    • /
    • 2008
  • The purpose of this paper is to propose a systematic method on the weld pitch design of a vehicle sub-frame considering the fatigue life of spot welding points. The input data, which perform the fatigue analysis on the spot welding nuggets, are obtained by both the dynamic analysis of the multi-body vehicle model passing through the virtual proving ground of a typical Belgian road and the quasi-static analysis with the finite element model of the vehicle sub-frame. By utilizing the life cycle data obtained from the fatigue analysis, the welding points to perform the pitch change are determined. The sensitivity analysis on the fatigue life of the welding points is carried out by using the three-level orthogonal array design, and through the results of the sensitivity analysis, the best combination on the welding pitch is determined. This study shows that as compared with the baseline design, the sub-frame redesigned by the proposed technique improves the fatigue life about 7 percent while reducing the number of welding points about 19 percent.

Application case for phase III of UAM-LWR benchmark: Uncertainty propagation of thermal-hydraulic macroscopic parameters

  • Mesado, C.;Miro, R.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1626-1637
    • /
    • 2020
  • This work covers an important point of the benchmark released by the expert group on Uncertainty Analysis in Modeling of Light Water Reactors. This ambitious benchmark aims to determine the uncertainty in light water reactors systems and processes in all stages of calculation, with emphasis on multi-physics (coupled) and multi-scale simulations. The Gesellschaft für Anlagen und Reaktorsicherheit methodology is used to propagate the thermal-hydraulic uncertainty of macroscopic parameters through TRACE5.0p3/PARCSv3.0 coupled code. The main innovative points achieved in this work are i) a new thermal-hydraulic model is developed with a highly-accurate 3D core discretization plus an iterative process is presented to adjust the 3D bypass flow, ii) a control rod insertion occurrence -which data is obtained from a real PWR test- is used as a transient simulation, iii) two approaches are used for the propagation process: maximum response where the uncertainty and sensitivity analysis is performed for the maximum absolute response and index dependent where the uncertainty and sensitivity analysis is performed at each time step, and iv) RESTING MATLAB code is developed to automate the model generation process and, then, propagate the thermal-hydraulic uncertainty. The input uncertainty information is found in related literature or, if not found, defined based on expert judgment. This paper, first, presents the Gesellschaft für Anlagen und Reaktorsicherheit methodology to propagate the uncertainty in thermal-hydraulic macroscopic parameters and, then, shows the results when the methodology is applied to a PWR reactor.

Off-line Multicritera Optimization of Creep Feed Ceramic Grinding Process

  • Chen Ming-Kuen
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.680-695
    • /
    • 1998
  • The objective of this study is to optimize the responses of the creep feed ceramic grinding process simultaneously by an off-1ine multicriteria optimization methodology. The responses considered as objectives are material removal rate, flexural strength, normal grinding force, workpiece surface roughness and grinder power. Alumina material was ground by the creep feed grinding mode using superabrasive grinding wheels. The process variables optimized for the above objectives include grinding wheel specification, such as bond type, mesh size, and grit concentration, and grinding process parameters, such as depth of cut and feed rate. A weighting method transforms the multi-objective problem into a single-objective programming format and then, by parametric variation of weights, the set of non-dominated optimum solutions are obtained. Finally, the multi-objective optimization methodology was tested by a sensitivity analysis to check the stability of the model.

  • PDF

Optimum Tire Contour Design Using Systematic STOM and Neural Network

  • Cho, Jin-Rae;Jeong, Hyun-Sung;Yoo, Wan-Suk;Shin, Sung-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1327-1337
    • /
    • 2004
  • An efficient multi-objective optimization method is presented making use of neural network and a systematic satisficing trade-off method (STOM), in order to simultaneously improve both maneuverability and durability of tire. Objective functions are defined as follows: the sidewall-carcass tension distribution for the former performance while the belt-edge strain energy density for the latter. A back-propagation neural network model approximates the objective functions to reduce the total CPU time required for the sensitivity analysis using finite difference scheme. The satisficing trade-off process between the objective functions showing the remarkably conflicting trends each other is systematically carried out according to our aspiration-level adjustment procedure. The optimization procedure presented is illustrated through the optimum design simulation of a representative automobile tire. The assessment of its numerical merit as well as the optimization results is also presented.

Structural Dynamic Modification of Fixture by Antiresonance Frequency Analysis in Environmental Vibration Test Control (환경진동시험 제어에서 반공진 진동수해석에 의한 치구의 구조변경설계)

  • 김준엽;정의봉
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.555-563
    • /
    • 1995
  • This paper proposes the method of antiresonance frequency analysis of multi-input multi-output system. The structural dynamic modification techniques by antiresonance frequency analysis are also applied to reduce the undertest at specimen attachment points on the fixture in environmental vibration test, which is resulted from the inconsistency of antiresonance frequencies at any specified points. Several computer simulations show that the proposed method can remove the undertest problem which is not removed in conventional vibration test control. And the effectiveness of the method is verified with the impact hammer excitation of aluminium fixture model.

  • PDF

An exact modeling method for dynamic analysis of multi-stepped rotor systems (다단 회전체계의 동적 해석을 위한 개선된 모델링 방법)

  • Park, Jong-Heuk;Hong, Seong-Wook;Lee, Chul;Kim, Jong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.200-205
    • /
    • 1998
  • Although discretization methods such as the transfer matrix method (TMM) and the finite element method (FEM) have played an important role in the design or analysis of rotor-bearing systems, continuous system modeling and analysis are often desirable especially for sensitivity analysis or design. The present paper proposes a comprehensive modeling procedure to obtain exact solution of general rotor-bearing systems. The proposed method considers a Timoshenko beam model and makes use of complex coordinate in the formulation. The proposed method provides exact eigensolutions and frequency response functions (FRFS) of general multi-stepped rotor-bearing systems. The first numerical example compares the proposed method with FEM. The numerical study proves that the proposed method is very efficient and useful for the analysis of rotor-bearing systems.

  • PDF

A Study on the Prediction of the Impact Harshness for a Passenger Vehicle (차량의 임팩트하쉬니스 성능 예측 연구)

  • Kim, Jin Hong;Jeong, Il Soo;Kim, Myung Gyu;Shim, Jeong Soo;Lee, Sang Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.613-616
    • /
    • 2012
  • A multi body simulation (MBS) model is developed for predicting the impact harshness of the vehicle. Impact harshness is the vehicle performance to evaluate the impulsive vibration behavior during driving over an obstacle of the road. Thus, the approach is simulated on the time domain for considering the transient behavior of the vehicle. The validity of vehicle component modeling of bushes, dampers and structure flexibilities is verified. The simulations are compared with the test results in both of vertical and longitudinal directions. In particular, the vertical vibration of the vehicle is significantly affected by the body flexibility. Through the sensitivity analysis, main factors for the impact harshness performance are investigated.

  • PDF

A GOAL PROGRAMMING MODEL FOR THE BEST POSSIBLE SOLUTION TO LOAN ALLOCATION PROBLEMS

  • Sharma, Dinesh-K.;Ghosh, Debasis;Alade, Julius-A.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.197-211
    • /
    • 2002
  • In this paper, we propose a multi-Criteria decision making approach to address the problem of finding the best possible solution in credit unions. Sensitivity analysis on the priority structure of the goals has been performed to obtain all possible solutions. The study uses the Euclidean distance method to measure distances of all possible solutions from the identified ideal solution. The possible optimum solution is determined from the minimum distance between the ideal solution and other possible solutions of the Problem.