• Title/Summary/Keyword: Multi-Resolution Image

Search Result 555, Processing Time 0.024 seconds

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

Development of 3D Mapping System for Web Visualization of Geo-spatial Information Collected from Disaster Field Investigation (재난현장조사 공간정보 웹 가시화를 위한 3차원 맵핑시스템 개발)

  • Kim, Seongsam;Nho, Hyunju;Shin, Dongyoon;Lee, Junwoo;Kim, Hyunju
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1195-1207
    • /
    • 2020
  • With the development of GeoWeb technology, 2D/3D spatial information services through the web are also has been used increasingly in the application of disaster management. This paper is suggested to construct a web-based 3D geo-spatial information mapping platform to visualize various spatial information collected at the disaster site in a web environment. This paper is presented a web-based geo-spatial information mapping service plan for the various types of 2D/3D spatial data and large-volume LiDAR point cloud data collected at the disaster accident site using HTML5/WebGL, web development standard technology and open source. Firstly, the collected disaster site survey 2D data is constructed as a spatial DB using GeoServer's WMS service and PostGIS provided an open source and rendered in a web environment. Secondly, in order to efficiently render large-capacity 3D point cloud data in a web environment, a Potree algorithm is applied to simplifies point cloud data into 2D tiles using a multi-resolution octree structure. Lastly, OpenLayers3 based 3D web mapping pilot system is developed for web visualization of 2D/3D spatial information by implementing basic and application functions for controlling and measuring 3D maps with Graphic User Interface (GUI). For the further research, it is expected that various 2D survey data and various spatial image information of a disaster site can be used for scientific investigation and analysis of disaster accidents by overlaying and visualizing them on a built web-based 3D geo-spatial information system.

Study on Optimization of Detection System of Prompt Gamma Distribution for Proton Dose Verification (양성자 선량 분포 검증을 위한 즉발감마선 분포측정 장치 최적화 연구)

  • Lee, Han Rim;Min, Chul Hee;Park, Jong Hoon;Kim, Seong Hoon;Kim, Chan Hyeong
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.162-168
    • /
    • 2012
  • In proton therapy, in vivo dose verification is one of the most important parts to fully utilize characteristics of proton dose distribution concentrating high dose with steep gradient and guarantee the patient safety. Currently, in order to image the proton dose distribution, a prompt gamma distribution detection system, which consists of an array of multiple CsI(Tl) scintillation detectors in the vertical direction, a collimator, and a multi-channel DAQ system is under development. In the present study, the optimal design of prompt gamma distribution detection system was studied by Monte Carlo simulations using the MCNPX code. For effective measurement of high-energy prompt gammas with enough imaging resolution, the dimensions of the CsI(Tl) scintillator was determined to be $6{\times}6{\times}50mm^3$. In order to maximize the detection efficiency for prompt gammas while minimizing the contribution of background gammas generated by neutron captures, the hole size and the length of the collimator were optimized as $6{\times}6mm^2$ and 150 mm, respectively. Finally, the performance of the detection system optimized in the present study was predicted by Monte Carlo simulations for a 150 MeV proton beam. Our result shows that the detection system in the optimal dimensions can effectively measure the 2D prompt gamma distribution and determine the beam range within 1 mm errors for 150 MeV proton beam.

The Shear Wave Velocity Analysis using Passive Method MASW in the Center of the Metropolis, Gyeongsan (Passive Method MASW 방법을 이용한 경산시 도심구간에서의 전단파 속도 분석)

  • Lee, Hong-Gyu;Kim, Woo-Hyuk;Jang, Seung-Ik;Lee, Seog-Kyu
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.511-516
    • /
    • 2007
  • Active method MASW(Multi channel Analysis of Surface Waves), which is one of the surface wave exploration methods, has the difficulties to supply enough shear wave velocity log, caused by short spread length and lack of low frequency energy. To make up this defect, the passive method MASW survey is taked and analysised in Daeku subway construction site, Jungpyung-dong Gyeongsan city. The passive method MASW using the microtremor, improve the quality of the overtone record by applying the azimuth correction caused offline sources. And combing with active overtone record which is acquired by same geometry has the benefits of improve shallow depth resolution and extend possible investigation depth. To take the optimized acquisition parameters, the 2m, 4m, and 6m geophone spacing is tested. And 2m spacing overtone image could make the reliable shear wave velocity log.

Classification of Industrial Parks and Quarries Using U-Net from KOMPSAT-3/3A Imagery (KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류)

  • Che-Won Park;Hyung-Sup Jung;Won-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1679-1692
    • /
    • 2023
  • South Korea is a country that emits a large amount of pollutants as a result of population growth and industrial development and is also severely affected by transboundary air pollution due to its geographical location. As pollutants from both domestic and foreign sources contribute to air pollution in Korea, the location of air pollutant emission sources is crucial for understanding the movement and distribution of pollutants in the atmosphere and establishing national-level air pollution management and response strategies. Based on this background, this study aims to effectively acquire spatial information on domestic and international air pollutant emission sources, which is essential for analyzing air pollution status, by utilizing high-resolution optical satellite images and deep learning-based image segmentation models. In particular, industrial parks and quarries, which have been evaluated as contributing significantly to transboundary air pollution, were selected as the main research subjects, and images of these areas from multi-purpose satellites 3 and 3A were collected, preprocessed, and converted into input and label data for model training. As a result of training the U-Net model using this data, the overall accuracy of 0.8484 and mean Intersection over Union (mIoU) of 0.6490 were achieved, and the predicted maps showed significant results in extracting object boundaries more accurately than the label data created by course annotations.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

The Correction Factor of Sensitivity in Gamma Camera - Based on Whole Body Bone Scan Image - (감마카메라의 Sensitivity 보정 Factor에 관한 연구 - 전신 뼈 영상을 중심으로 -)

  • Jung, Eun-Mi;Jung, Woo-Young;Ryu, Jae-Kwang;Kim, Dong-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.208-213
    • /
    • 2008
  • Purpose: Generally a whole body bone scan has been known as one of the most frequently executed exams in the nuclear medicine fields. Asan medical center, usually use various gamma camera systems - manufactured by PHILIPS (PRECEDENCE, BRIGHTVIEW), SIEMENS (ECAM, ECAM signature, ECAM plus, SYMBIA T2), GE (INFINIA) - to execute whole body scan. But, as we know, each camera's sensitivity is not same so it is hard to consistent diagnosis of patients. So our purpose is when we execute whole body bone scans, we exclude uncontrollable factors and try to correct controllable factors such as inherent sensitivity of gamma camera. In this study, we're going to measure each gamma camera's sensitivity and study about reasonable correction factors of whole body bone scan to follow up patient's condition using different gamma cameras. Materials and Methods: We used the $^{99m}Tc$ flood phantom, it recommend by IAEA recommendation based on general counts rate of a whole body scan and measured counts rates by the use of various gamma cameras - PRECEDENCE, BRIGHTVIEW, ECAM, ECAM signature, ECAM plus, IFINIA - in Asan medical center nuclear medicine department. For measuring sensitivity, all gamma camera equipped LEHR collimator (Low Energy High Resolution multi parallel Collimator) and the $^{99m}Tc$ gamma spectrum was adjusted around 15% window level, the photo peak was set to 140-kev and acquirded for 60 sec and 120 sec in all gamma cameras. In order to verify whether can apply calculated correction factors to whole body bone scan or not, we actually conducted the whole body bone scan to 27 patients and we compared it analyzed that results. Results: After experimenting using $^{99m}Tc$ flood phantom, sensitivity of ECAM plus was highest and other sensitivity order of all gamma camera is ECAM signature, SYMBIA T2, ECAM, BRIGHTVIEW, IFINIA, PRECEDENCE. And yield sensitivity correction factor show each gamma camera's relative sensitivity ratio by yielded based on ECAM's sensitivity. (ECAM plus 1.07, ECAM signature 1.05, SYMBIA T2 1.03, ECAM 1.00, BRIGHTVIEW 0.90, INFINIA 0.83, PRECEDENCE 0.72) When analyzing the correction factor yielded by $^{99m}Tc$ experiment and another correction factor yielded by whole body bone scan, it shows statistically insignificant value (p<0.05) in whole body bone scan diagnosis. Conclusion: In diagnosing the bone metastasis of patients undergoing cancer, whole body bone scan has been conducted as follow up tests due to its good points (high sensitivity, non invasive, easily conducted). But as a follow up study, it's hard to perform whole body bone scan continuously using same gamma camera. If we use same gamma camera to patients, we have to consider effectiveness of equipment's change by time elapsed. So we expect that applying sensitivity correction factor to patients who tested whole body bone scan regularly will add consistence in diagnosis of patients.

  • PDF

Time-Lapse Crosswell Seismic Study to Evaluate the Underground Cavity Filling (지하공동 충전효과 평가를 위한 시차 공대공 탄성파 토모그래피 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • Time-lapse crosswell seismic data, recorded before and after the cavity filling, showed that the filling increased the velocity at a known cavity zone in an old mine site in Inchon area. The seismic response depicted on the tomogram and in conjunction with the geologic data from drillings imply that the size of the cavity may be either small or filled by debris. In this study, I attempted to evaluate the filling effect by analyzing velocity measured from the time-lapse tomograms. The data acquired by a downhole airgun and 24-channel hydrophone system revealed that there exists measurable amounts of source statics. I presented a methodology to estimate the source statics. The procedure for this method is: 1) examine the source firing-time for each source, and remove the effect of irregular firing time, and 2) estimate the residual statics caused by inaccurate source positioning. This proposed multi-step inversion may reduce high frequency numerical noise and enhance the resolution at the zone of interest. The multi-step inversion with different starting models successfully shows the subtle velocity changes at the small cavity zone. The inversion procedure is: 1) conduct an inversion using regular sized cells, and generate an image of gross velocity structure by applying a 2-D median filter on the resulting tomogram, and 2) construct the starting velocity model by modifying the final velocity model from the first phase. The model was modified so that the zone of interest consists of small-sized grids. The final velocity model developed from the baseline survey was as a starting velocity model on the monitor inversion. Since we expected a velocity change only in the cavity zone, in the monitor inversion, we can significantly reduce the number of model parameters by fixing the model out-side the cavity zone equal to the baseline model.

  • PDF

IMAGING SIMULATIONS FOR THE KOREAN VLBI NETWORK(KVN) (한국우주전파관측망(KVN)의 영상모의실험)

  • Jung, Tae-Hyun;Rhee, Myung-Hyun;Roh, Duk-Gyoo;Kim, Hyun-Goo;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • The Korean VLBI Network (KVN) will open a new field of research in astronomy, geodesy and earth science using the newest three Elm radio telescopes. This will expand our ability to look at the Universe in the millimeter regime. Imaging capability of radio interferometry is highly dependent upon the antenna configuration, source size, declination and the shape of target. In this paper, imaging simulations are carried out with the KVN system configuration. Five test images were used which were a point source, multi-point sources, a uniform sphere with two different sizes compared to the synthesis beam of the KVN and a Very Large Array (VLA) image of Cygnus A. The declination for the full time simulation was set as +60 degrees and the observation time range was -6 to +6 hours around transit. Simulations have been done at 22GHz, one of the KVN observation frequency. All these simulations and data reductions have been run with the Astronomical Image Processing System (AIPS) software package. As the KVN array has a resolution of about 6 mas (milli arcsecond) at 220Hz, in case of model source being approximately the beam size or smaller, the ratio of peak intensity over RMS shows about 10000:1 and 5000:1. The other case in which model source is larger than the beam size, this ratio shows very low range of about 115:1 and 34:1. This is due to the lack of short baselines and the small number of antenna. We compare the coordinates of the model images with those of the cleaned images. The result shows mostly perfect correspondence except in the case of the 12mas uniform sphere. Therefore, the main astronomical targets for the KVN will be the compact sources and the KVN will have an excellent performance in the astrometry for these sources.