• 제목/요약/키워드: Multi-Resolution Analysis Discrete Wavelet Transform

검색결과 28건 처리시간 0.027초

A New Approach for Detection of Gear Defects using a Discrete Wavelet Transform and Fast Empirical Mode Decomposition

  • TAYACHI, Hana;GABZILI, Hanen;LACHIRI, Zied
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.123-130
    • /
    • 2022
  • During the past decades, detection of gear defects remains as a major problem, especially when the gears are subject to non-stationary phenomena. The idea of this paper is to mixture a multilevel wavelet transform with a fast EMD decomposition in order to early detect gear defects. The sensitivity of a kurtosis is used as an indicator of gears defect burn. When the gear is damaged, the appearance of a crack on the gear tooth disrupts the signal. This is due to the presence of periodic pulses. Nevertheless, the existence of background noise induced by the random excitation can have an impact on the values of these temporal indicators. The denoising of these signals by multilevel wavelet transform improves the sensitivity of these indicators and increases the reliability of the investigation. Finally, a defect diagnosis result can be obtained after the fast transformation of the EMD. The proposed approach consists in applying a multi-resolution wavelet analysis with variable decomposition levels related to the severity of gear faults, then a fast EMD is used to early detect faults. The proposed mixed methods are evaluated on vibratory signals from the test bench, CETIM. The obtained results have shown the occurrence of a teeth defect on gear on the 5th and 8th day. This result agrees with the report of the appraisal made on this gear system.

이산 웨이브렛 변환을 이용한 유효 음성 추출에 관한 연구 (A Study on Extracting Valid Speech Sounds by the Discrete Wavelet Transform)

  • 김진옥;황대준;백한욱;정진현
    • 정보처리학회논문지B
    • /
    • 제9B권2호
    • /
    • pp.231-236
    • /
    • 2002
  • 유효한 무성음이 시스템 노이즈와 합성됐을 경우 유효한 무성음 추출에 많은 어려움이 있으나 본 논문에서는 유효한 무성음 추출에 있어 이산 웨이브렛 변환을 이용한 신호 해석 내용을 기반으로 주파수와 그 위치를 블록별로 머징 규칙으로 유효 여부를 결정하기 때문에 노이즈가 많은 환경에서도 유효한 무성음 추출이 가능하다. 머징 알고리즘은 음성만으로도 처리 매개변수를 결정할 수 있고 시스템 잡음에 대하여서도 독립적이기 때문에 유효한 음성을 추출하는데 매우 효과적이다. 실험 결과를 통하여 유효한 음성 추출 처리 과정에서 보다 향상된 결과를 보이고 있으며 특히 고주파 노이즈에 대한 강한 적응력을 제시하고 시스템 구현에도 용이한 시스템 튜닝을 가능케 한다.

웨이브렛 변환을 이용한 배전계통의 전력품질 외란 검출에 관한 연구 (Power Quality Disturbance Detection in Distribution Systems Using Wavelet Transform)

  • 손영락;이화석;문경준;박준호;윤재영;김종율;김슬기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권7호
    • /
    • pp.328-336
    • /
    • 2005
  • Power quality has become concern both utilities and their customers with wide spread use of electronic and power electronic equipment. The poor quality of electric power causes malfunctions, instabilities and shorter lifetime of the load. In power system operation, power system disturbances such as faults, overvoltage, capacitor switching transients, harmonic distortion and impulses affects power quality. For diagnosing power quality problem, the causes of the disturbances should be understood before appropriate actions can be taken. In this paper we present a new approach to detect, localize, and investigate the feasibility of classifying various types of power quality disturbances. This paper deals with the use of a multi-resolution analysis by a discrete wavelet transform to detect power system disturbances such as interruption, sag, swell, transients, etc. We also proposed do-noising and threshold technique to detect power system disturbances in a noisy environment. To find the better mother wavelet for detecting disturbances, we compared the performance of the disturbance detection with the several mother wavelets such as Daubechies, Symlets, Coiflets and Biorthogonals wavelets. In our analysis, we adopt db4 wavelet as mother wavelet because it shows better results for detecting several disturbances than other mother wavelets. To show the effectiveness of the proposed method, a various case studies are simulated for the example system which is constructed by using PSCAD/EMTDC. From the simulation results. proposed method detects time Points of the start and end time of the disturbances.

웨이블렛 계수와 Hidden Markov Model을 이용한 얼굴인식 기법 (Face Recognition Using Wavelet Coefficients and Hidden Markov Model)

  • 이경아;이대종;박장환;전명근
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.673-678
    • /
    • 2003
  • 본 논문에서는 웨이블렛 계수와 Hidden Markov Model(HMM) 이용한 얼굴인식 알고리즘을 제안 한다. 입력 영상은 이산웨이블렛을 기반으로 한 다행상도 분석기법을 사용하여 데이터 수를 압축한 후, 각각의 해상도에서 얻어진 웨이블렛 계수를 특징벡터로 사용하여 HMM의 모델을 생성한다. 인식단계 에서는 웨이블렛 변환에 의해 생성된 개별대역의 인식값을 더하여 상호 보완함으로써 인식률을 높일 수 있었다. 제안된 알고리즘의 타당성을 검증하기 위하여 기본적 알고리즘인 벡터 양자화(VQ) 기법을 적용한 경우와 기존 얼굴인식에 제안된 DCT-HMM을 이용한 기법과의 인식률 비교를 한 결과, 제안된 방법이 우수한 성능을 보임을 알 수 있었다.

Bearing fault detection through multiscale wavelet scalogram-based SPC

  • Jung, Uk;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.377-395
    • /
    • 2014
  • Vibration-based fault detection and condition monitoring of rotating machinery, using statistical process control (SPC) combined with statistical pattern recognition methodology, has been widely investigated by many researchers. In particular, the discrete wavelet transform (DWT) is considered as a powerful tool for feature extraction in detecting fault on rotating machinery. Although DWT significantly reduces the dimensionality of the data, the number of retained wavelet features can still be significantly large. Then, the use of standard multivariate SPC techniques is not advised, because the sample covariance matrix is likely to be singular, so that the common multivariate statistics cannot be calculated. Even though many feature-based SPC methods have been introduced to tackle this deficiency, most methods require a parametric distributional assumption that restricts their feasibility to specific problems of process control, and thus limit their application. This study proposes a nonparametric multivariate control chart method, based on multiscale wavelet scalogram (MWS) features, that overcomes the limitation posed by the parametric assumption in existing SPC methods. The presented approach takes advantage of multi-resolution analysis using DWT, and obtains MWS features with significantly low dimensionality. We calculate Hotelling's $T^2$-type monitoring statistic using MWS, which has enough damage-discrimination ability. A bootstrap approach is used to determine the upper control limit of the monitoring statistic, without any distributional assumption. Numerical simulations demonstrate the performance of the proposed control charting method, under various damage-level scenarios for a bearing system.

태양활동 긴 주기와 기후변화의 연관성 분석 (Long Term Variability of the Sun and Climate Change)

  • 조일현;장헌영
    • Journal of Astronomy and Space Sciences
    • /
    • 제25권4호
    • /
    • pp.395-404
    • /
    • 2008
  • 태양활동프록시(proxies)와 지구연평균 기온아노말리 시계열을 이용하여 기후변화에서 태양활동신호를 찾아보았다. 이를 위해 Lomb & Scargle의 피어리드그램(Periodgram)을 이용하여 태양활동프록시와 기온아노말리 시계열을 주기분석하였다. 또한 EMD(Empirical Mode Decomposition)과 MODWR MRA(Maxial Overlap Discrete Wavelet Transform Multi Resolution Analysis)를 적용하여 두 시계열을 성분분해하고 이들 중 비슷한 주기의 특성을 보이는 성분을 비교하였다. 태양활동프록시는 짧의 주기의 파워가 긴 주기의 파워에 비해서 큰 반면 기온아노말리는 긴 주기에서 더 큰 파워를 보였다 EMD에 의한 성분분해 결과는 약40년보다 긴 주기성을 갖는 성분을 분해해 낼 수 없었지만 잔차 성분은 비교할 수 있었다. MRA에 의한 성분분해를 통해 지구연평균 기온아노말리 시계열에서 태양활동의 변화에 의한 신호를 찾아내었다. 1960년부터 2007년까지 기온상승에 대한 태양의 기여도는 39%로 계산되었다. 기후민감성은 출력신호의 진폭에만 관계하여 기후시스템이 간단한 2계미분방정식으로 근사될 수 있는 가능성에 대해 토의하였다.

다중해상도 웨이브렛 해석을 기본으로 한 가시화 영상의 극대값 해석 (Maxima Analysis from Visualized Image based on Multi-Resolution Analysis)

  • 박영식;김옥규
    • 융합신호처리학회논문지
    • /
    • 제11권2호
    • /
    • pp.157-162
    • /
    • 2010
  • 이 논문은 이산 웨이브렛 영역에 기반을 둔 fractal 해석에 관한 것이다. 많이 알려진 퓨리어 변환은 임의 신호의 주파수 해석에 폭넓게 사용되어 왔다. 그러나 이 방법은 시간 축에서 발생하는 갑작스러운 신호 변환과 비정상적인 신호를 주파수 변환 영역에서 검출하기 어렵다. 웨이브렛 영역에서 극대 값은 Lipschitz 지수 표현이 가능하고, 또한 극대값만 사용하여 영상 데이터의 윤곽선 및 데이터 특성을 표현하는 유용함을 나타내었다. 이것은 극대 값만 사용하여 본래 영상을 재생하는 것도 가능하다. 극대값 해석을 위해서 기름을 사용한 가시화 영상을 획득했다. 그런 후 ship model의 가시화 영상에 적용했다. 더욱이 sediment 입자의 붕괴과정에 의한 fractal 차원을 조사하였다. 본 논문은 가시화 영상의 극대값으로 fractal 차원을 계산하였고, 실험으로 얻은 가시화 영상으로부터 얻은 해석도 적은 데이터로 기존의 방법과 같은 결과를 나타냄을 보였다.

움직임 벡터의 정규화 및 에지의 패턴 분석을 이용한 복수 영상 기반 초해상도 영상 생성 기법 (Multi-Frame-Based Super Resolution Algorithm by Using Motion Vector Normalization and Edge Pattern Analysis)

  • 권순찬;유지상
    • 한국통신학회논문지
    • /
    • 제38A권2호
    • /
    • pp.164-173
    • /
    • 2013
  • 본 논문에서는 움직임 벡터의 정규화 및 윤곽선(edge)의 패턴 분석을 이용한 새로운 복수영상 기반의 초해상도(super resolution) 영상 생성 기법을 제안한다. 기존의 복수영상 기반의 초해상도 기법의 경우 입력 동영상을 구성하는 각 영상 간 부화소(sub-pixel) 단위의 움직임과 병진이동(global translation)만이 발생한다고 가정하여 기법의 적용이 제한적이다. 또한 이러한 제한에 강한 단일영상 기반의 초해상도 영상 생성 기법의 경우 보간 시 사용할 수 있는 정보량이 제한적이라는 단점이 있다. 본 논문에서는 기존 기법의 단점인 부화소 단위의 움직임에 대한 제한을 움직임 벡터의 정규화 기법을 통해 해결하고, 윤곽선 패턴 분석을 기반으로 한 2*2 블록 단위의 움직임 추정을 통해 병진이동에 대한 제한을 해결하였다. 또한 실험을 통하여 제안하는 기법이 기존의 이중선형(bi-linear)보간법, 단일영상과 복수영상 기반 초해상도 기법보다 우수하다는 것을 확인하였다.