• 제목/요약/키워드: Multi-Resolution Analysis Discrete Wavelet Transform

검색결과 28건 처리시간 0.027초

음향방출신호에 대한 이산웨이블릿 변환기법의 적용 (Application of Technique Discrete Wavelet Transform for Acoustic Emission Signals)

  • 박재준;김면수;김민수;김진승;백관현;송영철;김성홍;권동진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.585-591
    • /
    • 2000
  • The wavelet transform is the most recent technique for processing signals with time-varying spectra. In this paper, the wavelet transform is utilized to improved the assessment and multi-resolution analysis of acoustic emission signals generating in partial discharge. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals in case of applied voltage 20[kv]. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We applied FIR(Finite Impulse Response)digital filter algorithm in discrete to suppression for random noise. The white noise be included high frequency component denoised as decomposition of discrete wavelet transform level-3. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of acting(the early period, the last period) .

  • PDF

이산 웨이브렛 변환을 이용한 2차원 물체 인식에 관한 연구 (Analysis of 2-Dimensional Object Recognition Using discrete Wavelet Transform)

  • 박광호;김창구;기창두
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.194-202
    • /
    • 1999
  • A method for pattern recognition based on wavelet transform is proposed in this paper. The boundary of the object to be recognized includes shape information for object of machine parts. The contour is first represented using a one-dimensional signal and normalized about translation, rotation and scale, then is used to build the wavelet transform representation of the object. Wavelets allow us to decompose a function into multi-resolution hierarchy of localized frequency bands. The recognition of 2-dimensional object based on the wavelet is described to analyze the shape of analysis technique; the discrete wavelet transform(DWT). The feature vectors obtained using wavelet analysis is classified using a multi-layer neural network. The results show that, compared with the use of fourier descriptors, recognition using wavelet is more stable and efficient representation. And particularly the performance for objects corrupted with noise is better than that of other method.

  • PDF

SWT -based Wavelet Filter Application for De-noising of Remotely Sensed Imageries

  • Yoo Hee-Young;Lee Kiwon;Kwon Byung-Doo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.505-508
    • /
    • 2005
  • Wavelet scheme can be applied to the various remote sensing problems: conventional multi-resolution image analysis, compression of large image sets, fusion of heterogeneous sensor image and segmentation of features. In this study, we attempted wavelet-based filtering and its analysis. Traditionally, statistical methods and adaptive filter are used to manipulate noises in the image processing procedure. While we tried to filter random noise from optical image and radar image using Discrete Wavelet Transform (DW1) and Stationary Wavelet Transform (SW1) and compared with existing methods such as median filter and adaptive filter. In result, SWT preserved boundaries and reduced noises most effectively. If appropriate thresholds are used, wavelet filtering will be applied to detect road boundaries, buildings, cars and other complex features from high-resolution imagery in an urban environment as well as noise filtering

  • PDF

이산 웨이브렛 변환을 이용한 동기발전기 회전자 층간단락 진단에 관한 연구 (A Study of Shorted-Turn Detection in the Cylindrical Synchronous Generator Rotor Windings via Discrete Wavelet Transform)

  • 김영준;김장목
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.476-478
    • /
    • 2005
  • This paper describes a method for the detection of shorted-turn in the cylindrical synchronous generator rotor windings based on the discrete wavelet transform. Multi-resolution analysis(MRA) based on discrete wavelet transform provides a set of decomposed signals in independent frequency bands. In the proposed method, shorted-turn detection in rotor windings is based on the decomposition of the rotor currents, where wavelet coefficients of these signals have been extracted. Comparing these extracted coefficients is used for diagnosing the healthy machine from faulty machine. Experimental results show the effectiveness of the proposed method for shorted-turn detection in the cylindrical synchronous generator rotor windings.

  • PDF

Extraction of Series Arc Signals Based on Wavelet Transform in an Indoor Wiring System

  • Ji, Hong-Keun;Cho, Young-Jin;Wang, Guoming;Hwang, Seong-Cheol;Kil, Gyung-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권4호
    • /
    • pp.221-224
    • /
    • 2017
  • This paper dealt with the extraction of series arc signals based on wavelet transform in order to improve the accuracy of arc detection in indoor wiring systems. Three types of arc sources including a cord-cord, a terminal-cord, and an outlet-plug were fabricated to simulate typical arc defects. An arc generator fabricated according to UL 1699 was used to generate arcs. The optimal mother wavelet was selected as bior1.5 by calculating the correlation coefficients between the detected single current pulse and the wavelet. The detected arc current signals were then decomposed into eight levels using the discrete wavelet transform that implements the multi-resolution analysis method. By analyzing the decomposed components, the detail components D6, D7, and D8 were associated with arc signals, which were used for signal reconstruction. From the result, it was verified that the proposed method can be used for the extraction of the series arc signal from the AC mains, which is expected to be applied to further analysis of arc signals in indoor wiring systems.

이산 웨이블릿 변환(DWT)의 디노이징 최적 성능을 위한 다해상도 분석의 레벨 선택 연구 (Level Selection of the Multi-Resolution Analysis(MRA) for Optimum Denoising Performance of the Discrete Wavelet Transform(DWT))

  • 황주영;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.465-466
    • /
    • 2015
  • 배터리 관리시스템(BMS;battery management system)의 중요 고려요소인 SOC(state-of-charge) 및 SOH(state-of-health)의 전기적 등가회로 모델 기반 고성능 추정의 전제 조건은 배터리 단자전압의 안정된 실험데이터 확보이다. 그러나, 예상치 않은 에러로 인해 배터리 단자전압에 노이즈 성분이 포함될 경우 SOC 및 SOH 추정알고리즘의 성능저하가 우려된다. 이를 위해, 본 논문은 이산 웨이블릿 변환(DWT;discrete wavelet transform)의 다해상도 분석(MRA;multi resolution analysis) 레벨에 따른 디노이징 최적 성능을 소개하고자 한다. 하드 임계화(hard-thresholding) 및 소프트 임계화(soft-thresholding) 기법에 따른 디노이징 성능 차이를 보이고, 각 임계화 기법 적용 시 디노이징 최적 성능을 보이는 레벨을 선택한다.

  • PDF

Damage classification of concrete structures based on grey level co-occurrence matrix using Haar's discrete wavelet transform

  • Kabir, Shahid;Rivard, Patrice
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.243-257
    • /
    • 2007
  • A novel method for recognition, characterization, and quantification of deterioration in bridge components and laboratory concrete samples is presented in this paper. The proposed scheme is based on grey level co-occurrence matrix texture analysis using Haar's discrete wavelet transform on concrete imagery. Each image is described by a subset of band-filtered images containing wavelet coefficients, and then reconstructed images are employed in characterizing the texture, using grey level co-occurrence matrices, of the different types and degrees of damage: map-cracking, spalling and steel corrosion. A comparative study was conducted to evaluate the efficiency of the supervised maximum likelihood and unsupervised K-means classification techniques, in order to classify and quantify the deterioration and its extent. Experimental results show both methods are relatively effective in characterizing and quantifying damage; however, the supervised technique produced more accurate results, with overall classification accuracies ranging from 76.8% to 79.1%.

이차전지의 이산 웨이블릿 변환(DWT) 및 웨이블릿 패킷 변환(WPT) 비교 분석 (A Comparative Study of Discrete Wavelet Transform(DWT) and Wavelet Packet Transform(WPT) for a Li-Ion Cell)

  • 김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.152-153
    • /
    • 2014
  • 본 논문에서는 이차전지의 특성비교/분석을 위해 이산 웨이블릿 변환(DWT;discrete wavelet transform)과 웨이블릿 패킷 변환(WPT;wavelet packet transform)을 적용한 연구를 소개한다. 다해상도 분석(MRA; multi resolution analysis)의 시간-주파수 분석을 통해 저주파 성분(approximation;$A_n$)과 고주파 성분(detail;$D_n$)로 분해되는 것은 두 방법 동일하다. 하지만, 이산 웨이블릿 변환이 단순히 저대역 부분만 계속 분해하는 것과 달리 웨이블릿 패킷 변환은 저대역과 고대역을 모두 분해하여 높은 분해성능을 가지는 웨이블릿의 일반화이다. 웨이블릿 패킷 변환을 자세히 소개하고 이를 이차전지에 적용하여 이산 웨이블릿 변환과의 상관성을 정리하였다.

  • PDF

이산 웨이블릿 변환(DWT)의 모함수에 따른 배터리 전압의 노이즈 제거 성능 비교 분석 (A Comparative Analysis of Denoising Performance based on the Mother Wavelet of the Discrete Wavelet Transform(DWT))

  • 윤창오;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.463-464
    • /
    • 2015
  • 이산 웨이블릿 변환(DWT;discrete wavelet transform)의 다해상도 분석(MRA;multi resolution analysis)을 효율적으로 수행하기 위해서는 적절한 모함수(mother wavelet)의 선택이 필수적이다. 본 논문에서는, 노이즈가 포함된 충방전 전압의 디노이징(denoising)을 구현할 때, 모함수에 따른 디노이징 성능을 비교 및 분석한다. 고정된 MRA 레벨에서 6개의 모함수를 비교하되, 각 모함수에서 최대 SNR(signal-to-noise ratio)을 가지는 타입을 대푯값으로 정하여 모함수에 따른 디노이징 성능을 비교한다. 이를 위해, 하드 임계화(hard-thresholding) 및 소프트 임계화(soft-thresholding) 기법을 적용한다.

  • PDF

웨이브렛 변환을 이용한 전력품질 데이터 압축에 관한 연구 (Power Quality Data Compression using Wavelet Transform)

  • 정영식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권12호
    • /
    • pp.561-566
    • /
    • 2005
  • This paper introduces a compression technique for power qualify disturbance signal via discrete wavelet transform(DWT). The proposed approach is based on a previous estimation of the stationary component of power quality disturbance signal, so that it could be subtracted from the original signal in order to reduce a dynamic range of signal and generate transient events signal, which is subsequently applied to the compression technique. The compression techniques is performed through the difference signal decomposition, thresholding of wavelet coefficients, and signal reconstruction. It presents the relation between compression efficiency and threshold. It shouts that the wavelet transform leads to a power quality data compression approach with high compression efficiency, small compression error and good de-nosing effect.