• Title/Summary/Keyword: Multi-Pressure

Search Result 1,500, Processing Time 0.038 seconds

Contact Pressure Analysis of a Windshield Wiperblade (와이퍼 블레이드의 누름압 해석)

  • Lee, Byoung-Soo;Shin, Jin-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.51-57
    • /
    • 2006
  • The contact pressure distribution between a rubber wiper blade and a glass windshield is a major factor for wiping performance. A modeling and simulation method has been developed to forecast the contact pressure distribution on a wiper blade. For modeling multi-body dynamics of an wiper linkage system and flexible nature of wiper blade, ADAMS and ADAMS/flex are employed. A simulation study has been also conducted to obtain contact pressure distribution. Comparison between simulation and measurement is provided to ensure fidelity of the model and the simulation method.

Deep polarization observations of a ram pressure stripped galaxy, NGC 4522

  • Choi, Woorak;Chung, Aeree;Kim, Chang-goo;Lee, Bumhyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.65.1-65.1
    • /
    • 2020
  • We present high-resolution, high-sensitivity continuum data of NGC 4522 observed at 3 cm (X-band) and 10 cm (S-band) in full polarization mode using the JVLA. This observation has 2 - 4 times better spatial resolution and 2 - 5 times better sensitivity compared to previous continuum observations. NGC 4522 is a Virgo spiral galaxy undergoing active ram pressure stripping. This galaxy is particularly well known for the CO emission detected outside its stellar disk, some of which coincides with the extraplanar HI gas and Halpha patches. The major goal of our JVLA observation is to leverage our understanding of the influence of the ram pressure on the general ISM field and multi-phase medium. By combining our new deep radio continuum data and previous observations, we will investigate how the B-field properties can be affected by the ram pressure, and what roles the B-field plays in the stripping process of the multi-phased ISM and in the star formation activity when the ram pressure is present.

  • PDF

The Sensitivity Analysis of Thermal Expansion Breakage of Multi-layer Glazing in Building Envelope (건물 외피에 적용된 복층창의 열팽창 파손에 대한 민감도 분석 연구)

  • Yoon, Jong-Ho;Kim, Seung-Chul;Im, Kyung-Up;Oh, Myeong-Hwan
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.93-97
    • /
    • 2014
  • Curtain wall system of office buildings has recently become very common in Korea. As the multi-layer curtain glazing is exposed to outdoor environment, it is very subjected to direct environmental impact. Consequently, breakage and cracks of glazing due to heat expansion is frequently observed. This study explores various causes and aspects for destruction of multi-layer glazing. A sensitivity analysis was performed on the basis that thermal changes causes damage to the multi-layer glazing. Air temperature in air cavity within the multi-layer glazing was examined to find its effect on multi-layer glazing breakage. Analysis showed high deflection to depth ratio of 1:1.8 and that higher the aspect ratio, smaller is the deflection. Allowable pressure showed that the weakest value is for aspect ratio of 1:2.9. Sensitivity analysis by the area of the glazing showed that as area of glazing becomes higher, allowable pressure and deflection-depth ratio becomes smaller. For allowable pressure and allowable deflection-depth within air cavity, the glazing breakage occurred at least $107^{\circ}C$. The results from glazing breakage by thermal factor shows that it is hard to break the glazing with only an increase in air cavity temperature in multi-layer glazing applied in buildings.

The Calculation Method of Apparent Earth Pressure in Multi-Layered Ground with Clay and Sand (점토와 모래가 포함된 다층지반의 경험토압 산정방법에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Jin-Hae;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.21-34
    • /
    • 2021
  • In this study, to solve a problem that cannot consider the contribution effect of each layers when the apparent earth pressure in homogeneous ground is applied to multi-layered ground, the measured earth pressures at World were investigated and analyzed. It has been confirmed that the apparent earth pressure in mulit-layered ground is different from single ground and that the extra layer's contribution to the earth pressure cannot be considered. The conventional method of calculating the apparent earth pressure for single ground was extended to mulit-layered ground, and proposed and verified the applicable method for both single and mulit-layered ground. The proposed methods predicted the earth pressure closer to the measurements at the excavation depth of 0.1Z/H or below, and the prediction reliability was evaluated to be better than the conventional method. Among the proposed methods, the method of considering the area ratio of the active failure has a geotechnical validity and predicts the most similar results to the actual earth pressure. To confirm the applicability of the proposed methods, it was presented by comparing and analyzing the results of the proposed methods with the conventional method for the actual case.

Experimental Study on Compact type CO2 Gas Cooler(1) - Heat Flowrate and Pressure Drop in a Multi-Tube-In-Tube Helical Coil Type Gas Cooler - (CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(1) -다중관식 헬리컬 코일형 가스냉각기내 CO2의 열유량과 압력강하-)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 2010
  • The heat flowrate and pressure drop of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were investigated experimentally. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], respectively and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The heat flowrate of $CO_2$ in the test section is increased with the increase in mass flowrate of coolant, the cooling pressure and mass flowrate of $CO_2$. The pressure drop of $CO_2$ is decreased with the decrease in mass flowrate of coolant and $CO_2$, but decreased with increase in cooling pressure of $CO_2$. The heat flowrate of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly higher than that of $CO_2$ in the double pipe type gas cooler, while the pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly lower than that of $CO_2$ in the double pipe type gas cooler. Therefore, in case of the application of $CO_2$ at the multi-tube-in-tube helical coil type gas cooler, it is expected to carry out the high-efficiency, high-performance and compactness of gas cooler.

Pressure Analysis of Sterntube after Bush Bearing Considering Elastic Deflection of Misaligned Journal and Partial Slope of Bearing Bush (탄성 변형된 저어널의 편심과 베어링 부시의 부분경사를 고려한 선미관 후부 베어링의 압력분포 해석)

  • Choung, Joon-Mo;Choe, Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.666-674
    • /
    • 2007
  • It is very important to estimate static squeezing pressure distributions for lining material of sterntube after bearing at dry dock stage since the maximum squeezing pressure value can be one of the significant characteristics representing coming navigation performances of the propulsion system. Moderate oil film pressure between lining material and propulsion shaft is also essential for safe ship service. In this paper, Hertz contact theory is explained to derive static squeezing pressure. Reynolds equation simplified from Navier-Stokes equation is centrally differentiated to numerically obtain dynamic oil film pressures. New shaft alignment technology of nonlinear elastic multi-support bearing elements is also used in order to obtain external forces acting on lining material of bearing. For 300K DWT class VLCC with synthetic bush of sterntube after bearing, static squeezing pressures are calculated using derived external forces and Hertz contact theory. Optimum partial slope of the after bush is presented by parametric shaft alignment analyses. Dynamic oil film pressures are comparatively evaluated for partially bored and unbored after bush. Finally it is proved that the partial slope can drastically reduce oil film pressure during engine running.

Development of Non-Invasive Pressure Estimation Using 3D Multi-Path Line Integration Method from Magnetic Resonance Velocimetry (MRV) (자기공명유속계 (MRV) 에서 3차원 다중경로 선적분법을 활용한 비침습적 압력예측 방법 개발)

  • Ilhoon Jang;Muhammad Hafidz Ariffudin;Simon Song
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.14-23
    • /
    • 2023
  • The pressure difference across stenotic blood vessels is a commonly used clinical metric for diagnosing many cardiovascular diseases. At present, most clinical pressure measurements rely solely on invasive catheterization. In this study, we propose a novel method for non-invasive pressure estimation using the incompressible Navier-Stokes equations and a 3D multi-path integration approach. We verify spatio-temporal convergence on an in-silico dataset of a cylindrical straight pipe phantom with steady and pulsatile flow fields. We then evaluate the proposed method on an in vitro dataset of reconstructed control, pre-operative, and post-operative carotid artery cases acquired from 4D flow MRI. The performance of our method is compared to existing approaches based on the pressure Poisson equation and work-energy relative pressure. The results demonstrate the proposed method's high accuracy, robustness to spatio-temporal subsampling, and reduced sensitivity to noise, highlighting its great potential for non-invasive pressure estimation.

Theoretical Analysis on Overturn Safety of Train affected by Wind Pressure (풍압력을 받는 철도차량의 전복 안전에 관한 이론 해석)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.537-542
    • /
    • 2012
  • Rolling stocks are often subjected to the effects of natural strong wind or wind pressure caused by the crossing train. These wind pressure cause the falling-off in running stability and overturn safety. It is sometimes reported that trains are blown over by a gust of wind. So, many countries enact regulations to secure the overturn safety for wind speed. In this study, theoretical equations of overturn safety based on multi-body model are derived and analyzed the difference between the result of the solid model and that of multi-body model. In case of multi-body model, it is assumed that the degrees of freedom for carbody and bogie are assigned an independent values respectively. The results show that the latter approach based on multi-body model can access the overturn safety of train and replace the conventional method by using commercial software which is accessing with decrement of wheel load.

A Study on the Sealing Characteristics of Multi-contact O-rings (다접오링의 밀봉특성 해석에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.52-57
    • /
    • 2012
  • This study presents sealing characteristics of multi-contact o-rings as functions of strain, compression stress, and contact normal stress using a FEM technique. The FEM results on the sealing characteristics show that the maximum strain, maximum compression stress, and maximum contact normal stress of multi-contact o-rings are approximately 1.7 times higher than those of conventional o-rings. This is due to a U-grooved cross section of multi-contact o-rings, and the multi-contact o-rings with a U-groove show more effective in sealing for high pressure vessels, valves, and gas equipments. And the extrusion failure in the multi- contact o-ring does not produce for an increased gas pressure due to a U-groove. This may extend sealing life compared to that of a conventional o-ring.

Design of Optimized Multi-Fuzzy Controllers by Hierarchical Fair Competition-based Genetic Algorithms for Air-Conditioning System (에어컨시스템에 대한 계층적 공정 경쟁 유전자 알고리즘을 이용한 최적화된 다중 퍼지제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2007
  • In this paper, we propose an approach to design multi-fuzzy controllers for the superheat and the low pressure that have an influence on energy efficiency and stabilization of air conditioning system with multi-evaporators. Air conditioning system with multi-evaporators is composed of compressor, condenser, several evaporators and several expansion valves. It is quite difficult to control the air conditioning system because the change of the refrigerant condition give an impact on the overall air conditioning system. In order to solve the drawback, we design multi-fuzzy controllers which control simultaneously both three expansion valve and one compressor for the superheat and the low pressure of air conditioning system. The proposed multi fuzzy controllers are given as a kinds of controller types such as a simplified fuzzy inference type. Here the scaling factors of each fuzzy controller are efficiently adjusted by Hierarchical Fair Competition-based Genetic Algorithms. The values of performance index of the simulation results of the A company type compare with simulation results of simplified inference type.