DOI QR코드

DOI QR Code

Development of Non-Invasive Pressure Estimation Using 3D Multi-Path Line Integration Method from Magnetic Resonance Velocimetry (MRV)

자기공명유속계 (MRV) 에서 3차원 다중경로 선적분법을 활용한 비침습적 압력예측 방법 개발

  • Muhammad Hafidz Ariffudin (Department of mechanical engineering, Hanyang Univ.) ;
  • Ilhoon Jang (Department of mechanical engineering, Hanyang Univ.) ;
  • Simon Song (Department of mechanical engineering, Hanyang University)
  • 무함마드 하피즈 아리푸딘 ;
  • 장일훈 ;
  • 송시몬
  • Received : 2023.05.24
  • Accepted : 2023.07.09
  • Published : 2023.07.31

Abstract

The pressure difference across stenotic blood vessels is a commonly used clinical metric for diagnosing many cardiovascular diseases. At present, most clinical pressure measurements rely solely on invasive catheterization. In this study, we propose a novel method for non-invasive pressure estimation using the incompressible Navier-Stokes equations and a 3D multi-path integration approach. We verify spatio-temporal convergence on an in-silico dataset of a cylindrical straight pipe phantom with steady and pulsatile flow fields. We then evaluate the proposed method on an in vitro dataset of reconstructed control, pre-operative, and post-operative carotid artery cases acquired from 4D flow MRI. The performance of our method is compared to existing approaches based on the pressure Poisson equation and work-energy relative pressure. The results demonstrate the proposed method's high accuracy, robustness to spatio-temporal subsampling, and reduced sensitivity to noise, highlighting its great potential for non-invasive pressure estimation.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1A2B5B03002103).

References

  1. Dyverfeldt, P., Hope, M. D., Tseng, E. E. and Saloner, D., 2013, "Magnetic Resonance Measurement of Turbulent Kinetic Energy for the Estimation of Irreversible Pressure Loss in Aortic Stenosis", JACC: Cardiovascular Imaging, vol.6(1), pp. 64-71. https://doi.org/10.1016/j.jcmg.2012.07.017
  2. Ha, H., Kim, G. B., Kweon, J., Huh, H. K., Lee, S. J., Koo, H. J., Kang, J.-W., Lim, T.-H., Kim, D.-H., Kim, Y.-H., Kim, N. and Yang, D. H., 2016, "Turbulent Kinetic Energy Measurement Using Phase Contrast MRI for Estimating the Post-Stenotic Pressure Drop: In Vitro Validation and Clinical Application", PLOS ONE, vol.11(3), pp. e0151540.
  3. Baumgartner, H., Hung, J., Bermejo, J., Chambers, J. B., Evangelista, A., Griffin, B. P., Iung, B., Otto, C. M., Pellikka, P. A. and Quinones, M., 2009, "Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice", European Journal of Echocardiography, vol.10(1), pp. 1-25. https://doi.org/10.1093/ejechocard/jen303
  4. Deweese, J. A., May, A. G., Lipchik, E. O. and Rob, C. G., 1970, "Anatomic and Hemodynamic Correlations in Carotid Artery Stenosis", Stroke, vol.1(3), pp. 149-157. https://doi.org/10.1161/01.STR.1.3.149
  5. May, A. G., de Berg, L. V., Deweese, J. A. and Rob, C. G., 1963, "Critical arterial stenosis", Surgery, vol.54(1), pp. 250-259.
  6. Greenfield, J. C., Jr. and Tindall, G. T., 1965, "EFFECT OF ACUTE INCREASE IN INTRACRANIAL PRESSURE ON BLOOD FLOW IN THE INTERNAL CAROTID ARTERY OF MAN", J Clin Invest, vol.44(8), pp. 1343-1351. https://doi.org/10.1172/JCI105239
  7. Cioffi, G., Faggiano, P., Vizzardi, E., Tarantini, L., Cramariuc, D., Gerdts, E. and Simone, G. d., 2011, "Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis", Heart, vol.97(4), pp. 301-307. https://doi.org/10.1136/hrt.2010.192997
  8. Jenkins, N. P. and Ward, C., 1999, "Coarctation of the aorta: natural history and outcome after surgical treatment", QJM: An International Journal of Medicine, vol.92(7), pp. 365-371. https://doi.org/10.1093/qjmed/92.7.365
  9. Warnes, C. A., Williams, R. G., Bashore, T. M., Child, J. S., Connolly, H. M., Dearani, J. A., Nido, P. d., Fasules, J. W., Graham, T. P., Hijazi, Z. M., Hunt, S. A., King, M. E., Landzberg, M. J., Miner, P. D., Radford, M. J., Walsh, E. P. and Webb, G. D., 2008, "ACC/AHA 2008 Guidelines for the Management of Adults With Congenital Heart Disease", Circulation, vol.118(23), pp. e714-e833. https://doi.org/10.1016/j.jacc.2008.10.001
  10. Deng, Z., Fan, Z., Xie, G., He, Y., Natsuaki, Y., Jin, N., Bi, X., An, J., Liu, X., Zhang, Z., Fan, Z. and Li, D., 2014, "Pressure gradient measurement in the coronary artery using 4D PC-MRI: towards noninvasive quantification of fractional flow reserve", Journal of Cardiovascular Magnetic Resonance, vol.16(1), pp. O55.
  11. Gersh, B. J., Maron, B. J., Bonow, R. O., Dearani, J. A., Fifer, M. A., Link, M. S., Naidu, S. S., Nishimura, R. A., Ommen, S. R., Rakowski, H., Seidman, C. E., Towbin, J. A., Udelson, J. E. and Yancy, C. W., 2011, "2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy", Circulation, vol.124(24), pp. e783-e831. https://doi.org/10.1161/CIR.0b013e318223e2bd
  12. Feldman, T., 2006, "Assessment of the transvalvular pressure gradient in aortic stenosis", J. Invasive Cardiol, vol.18(8), pp. 363-364.
  13. Konecny, T., Khanna, A. D., Novak, J., Jama, A. A., Zawadowski, G. M., Orban, M., Pressman, G., Bukartyk, J., Kara, T., Cetta Jr., F., Borlaug, B. A., Somers, V. K. and Reeder, G. S., 2014, "Interatrial pressure gradients during simulated obstructive sleep apnea: A catheter-based study", Catheterization and Cardiovascular Interventions, vol.84(7), pp. 1138-1145. https://doi.org/10.1002/ccd.25433
  14. Stamm, R. B. and Martin, R. P., 1983, "Quantification of pressure gradients across stenotic valves by Doppler ultrasound", Journal of the American College of Cardiology, vol.2(4), pp. 707-718. https://doi.org/10.1016/S0735-1097(83)80311-8
  15. Hatle, L., Brubakk, A., Tromsdal, A. and Angelsen, B., 1978, "Noninvasive assessment of pressure drop in mitral stenosis by Doppler ultrasound", British Heart Journal, vol.40(2), pp. 131-140. https://doi.org/10.1136/hrt.40.2.131
  16. ZHANG, Y. and NITTER-HAUGE, S., 1985, "Determination of the mean pressure gradient in aortic stenosis by Doppler echocardiography", European Heart Journal, vol.6(12), pp. 999-1005. https://doi.org/10.1093/oxfordjournals.eurheartj.a061821
  17. Elkins, C. J. and Alley, M. T., 2007, "Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion", Experiments in Fluids, vol.43(6), pp. 823-858. https://doi.org/10.1007/s00348-007-0383-2
  18. Benson, M. J., Banko, A. J., Elkins, C. J., An, D.-G., Song, S., Bruschewski, M., Grundmann, S., Borup, D. D. and Eaton, J. K., 2020, "The 2019 MRV challenge: turbulent flow through a U-bend", Experiments in Fluids, vol.61(6), pp. 148.
  19. You, H. W., Baek, S., Kim, D.-H., Lee, W., Oh, S. and Hwang, W., 2020, "Application of Magnetic Resonance Thermometry (MRT) on Fully Developed Turbulent Pipe Flow using 3T and 7T MRI", Journal of The Korean Society of Visualization, vol.18(1), pp. 26-37.
  20. Benson, M. J., Banko, A. J., Elkins, C. J., An, D.-G., Song, S., Bruschewski, M., Grundmann, S., Bandopadhyay, T., Roca, L. V., Sutton, B., Han, K., Hwang, W. and Eaton, J. K., 2023, "MRV challenge 2: phase locked turbulent measurements in a roughness array", Experiments in Fluids, vol.64(2), pp. 28.
  21. Kwon, M., Park, S. and Huh, H., 2023, "4D flow MRI based flow visualization and quantification of bicuspid valvular flow using ex-vivo porcine model", Journal of The Korean Society of Visualization, vol.21(1), pp. 12-17.
  22. Ko, S., Lee, J., Song, S., Kim, D., Lee, S. H. and Cho, J.-H., 2019, "Patient-specific Hemodynamics of Severe Carotid Artery Stenosis Before and After Endarterectomy Examined by 4D Flow MRI", Scientific Reports, vol.9(1), pp. 18554.
  23. Gresho, P. M. and Sani, R. L., 1987, "On pressure boundary conditions for the incompressible Navier-Stokes equations", International Journal for Numerical Methods in Fluids, vol.7(10), pp. 1111-1145. https://doi.org/10.1002/fld.1650071008
  24. Yang, G.-Z., Kilner, P. J., Wood, N. B., Underwood, S. R. and Firmin, D. N., 1996, "Computation of flow pressure fields from magnetic resonance velocity mapping", Magnetic Resonance in Medicine, vol.36(4), pp. 520-526. https://doi.org/10.1002/mrm.1910360404
  25. Ebbers, T., Wigstrom, L., Bolger, A. F., Engvall, J. and Karlsson, M., 2001, "Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI", Magnetic Resonance in Medicine, vol.45(5), pp. 872-879. https://doi.org/10.1002/mrm.1116
  26. Krittian, S. B. S., Lamata, P., Michler, C., Nordsletten, D. A., Bock, J., Bradley, C. P., Pitcher, A., Kilner, P. J., Markl, M. and Smith, N. P., 2012, "A finite-element approach to the direct computation of relative cardiovascular pressure from time-resolved MR velocity data", Medical Image Analysis, vol.16(5), pp. 1029-1037. https://doi.org/10.1016/j.media.2012.04.003
  27. Donati, F., Figueroa, C. A., Smith, N. P., Lamata, P. and Nordsletten, D. A., 2015, "Non-invasive pressure difference estimation from PC-MRI using the work-energy equation", Medical Image Analysis, vol.26(1), pp. 159-172. https://doi.org/10.1016/j.media.2015.08.012
  28. Bertoglio, C., Nunez, R., Galarce, F., Nordsletten, D. and Osses, A., 2018, "Relative pressure estimation from velocity measurements in blood flows: State-of-the-art and new approaches", International Journal for Numerical Methods in Biomedical Engineering, vol.34(2), pp. e2925.
  29. Marlevi, D., Ruijsink, B., Balmus, M., Dillon-Murphy, D., Fovargue, D., Pushparajah, K., Bertoglio, C., Colarieti-Tosti, M., Larsson, M., Lamata, P., Figueroa, C. A., Razavi, R. and Nordsletten, D. A., 2019, "Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy", Scientific Reports, vol.9(1), pp. 1375.
  30. Liu, X. and Katz, J., 2006, "Instantaneous pressure and material acceleration measurements using a four-exposure PIV system", Experiments in Fluids, vol.41(2), pp. 227-240. https://doi.org/10.1007/s00348-006-0152-7
  31. Lee, C. J., Cho, G. R., Kim, U. K., Kim, D. H. and Doh, D. H., 2016, "Evaluations on a Pressure-Field Calculation Method using PIV Synthetic Image", Journal of The Korean Society of Visualization, vol.14(2), pp. 46-51. https://doi.org/10.5407/JKSV.2016.14.2.046
  32. Wang, C., Gao, Q., Wang, H., Wei, R., Li, T. and Wang, J., 2016, "Divergence-free smoothing for volumetric PIV data", Experiments in Fluids, vol.57(1), pp. 15.
  33. Schiavazzi, D. E., Nemes, A., Schmitter, S. and Coletti, F., 2017, "The effect of velocity filtering in pressure estimation", Experiments in Fluids, vol.58(5), pp. 50.
  34. Womersley, J. R., 1955, "Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known", J Physiol, vol.127(3), pp. 553-563. https://doi.org/10.1113/jphysiol.1955.sp005276
  35. Ponzini, R., Vergara, C., Rizzo, G., Veneziani, A., Roghi, A., Vanzulli, A., Parodi, O. and Redaelli, A., 2010, "Womersley Number-Based Estimates of Blood Flow Rate in Doppler Analysis: In Vivo Validation by Means of Phase-Contrast MRI", IEEE Transactions on Biomedical Engineering, vol.57(7), pp. 1807-1815. https://doi.org/10.1109/TBME.2010.2046484