• 제목/요약/키워드: Multi-Physics Analysis

검색결과 176건 처리시간 0.034초

AC PDP(Plasma Display Panel)의 방전 특성 해석

  • 황기웅;정희섭;서정현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1997년도 제13회 학술발표회 논문개요집
    • /
    • pp.173-176
    • /
    • 1997
  • A numerical analysis of the micro-discharge in an AC pplasma dispplay cell has been made using time-deppendent, 2-dimensional multi-fluid equations to understand the discharge pphysics of He-Xe discharge. The time deppendent distribution of the electron tempperature, densities of electrons, various ions and excited sppecies, and the effects fo the wall charge accumulated on the dielectric surface are obtained and comppared with the results of direct observation of time deppendent behavior of VUV and visible sppectra from single discharge cell observed using a gated, image intensified CCD to elucidate the discharge physics.

  • PDF

High resolution spectroscopic study of the peculiar globular cluster M22 (NGC 6656)

  • Kim, Hyeong-Jun;Lee, Jae-Woo
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.65.1-65.1
    • /
    • 2017
  • We present the high-resolution spectroscopic study of the red-giant branch (RGB) stars in the peculiar globular cluster M22 (NGC 6656). We obtained high-resolution spectra of 55 RGB stars using the CTIO 4-m telescope and the HYDRA multi-object spectrograph. By employing an improved LTE analysis method, we measured accurate elemental abundances. In this talk, we will discuss the differences in the chemical composition between the two stellar populations in the context of the formation of M22.

  • PDF

전자기와 열전달을 고려한 고효율 모터의 다분야 위상최적설계 (Multi-physics Topology Optimization of High Efficiency Motor Considering Electromagnetics and Heat Transfer)

  • 왕세명;심호경;문희곤;조양희;김명균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1058-1063
    • /
    • 2004
  • This paper presents a new approach regarding thermal characteristics associated with a design of the high efficiency motor. Electrical conduction materials, such as coil and aluminum embedded in the core generate high heat exerting negative influence on both lifetime and performance of machine. Thus, it is necessary to design high efficiency motor considering heat transfer in order to improve motor performance and to be protected against overheating. In this paper, firstly, numerical analysis of electromagnetic field is carried out by the nonlinear transient finite element method (FEM). Secondly, the linear static FEA of magneto-thermal field is implemented by applying source current computed by the nonlinear transient analysis. FE results are validated in terms of electromagnetics and heat transfer by experiments. And then, the pseudo-transient topology optimization using a multi-objective function is performed. The proposed method is applied to a squirrel cage single-phase induction motor of the scroll compressor.

  • PDF

Development and verification of a Monte Carlo two-step method for lead-based fast reactor neutronics analysis

  • Yiwei Wu;Qufei Song;Ruixiang Wang;Yao Xiao;Hanyang Gu;Hui Guo
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2112-2124
    • /
    • 2023
  • With the rise of economic and safety standards for nuclear reactors, new concepts of Gen-IV reactors and modular reactors showed more complex designs that challenge current tools for reactor physics analysis. A Monte Carlo (MC) two-step method was proposed in this work. This calculation scheme uses the continuous-energy MC method to generate multi-group cross-sections from heterogeneous models. The multi-group MC method, which can adapt locally-heterogeneous models, is used in the core calculation step. This calculation scheme is verified using a Gen-IV modular lead-based fast reactor (LFR) benchmark case. The influence of homogenized patterns, scatter approximations, flux separable approximation, and local heterogeneity in core calculation on simulation results are investigated. Results showed that the cross-sections generated using the 3D assembly model with a locally heterogeneous representation of control rods lead to an accurate estimation with less than 270 pcm bias in core reactivity, 0.5% bias in control rod worth, and 1.5% bias on power distribution. The study verified the applicability of multi-group cross-sections generated with the MC method for LFR analysis. The study also proved the feasibility of multi-group MC in core calculation with local heterogeneity, which saves 85% time compared to the continuous-energy MC.

Intra-night optical variability of AGN in COSMOS field

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin;Kim, Dohyeong;Jun, Hyunsung;Lee, Joon Hyeop;Pallerola, Mar Mezcua
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.64.2-64.2
    • /
    • 2016
  • Optical variability is one way to probe the nature of the central engine of AGN at smaller linear scales and previous studies have shown that optical variability is more prevalent at longer timescales and at shorter wavelengths. Especially, intra-night variability can be explained through the damped random walk model but small samples and inhomogeneous data have made constraining this model hard. To understand the properties and physical mechanism of optical variability, we are performing the KMTNet Active Nuclei Variability Survey (KANVaS). Test data of KMTNet in the COSMOS field was obtained over 2 separate nights during 2015, in B, V, R, and I bands. Each night was composed of 5 and 9 epochs with ~30 min cadence. To find AGN in the COSMOS field, we applied multi-wavelength selection methods. Different selection methods means we are looking different region in unification model of AGN, and 100~120, 400~500, 50~100 number of AGN are detected in X-ray, mid-infrared, and radio selection of AGN, respectively. We performed image convolution to reflect seeing fluctuation, then differential photometry between the selected AGN and nearby stars to achieve photometric uncertainty ~0.01mag. We employed one of the standard time-series analysis tools to identify variable AGN, chi-square test. Preliminarily results indicate that intra-night variability is found for X-ray selected, Type1 AGN are 23.6%, 26.4%, 21.3% and 20.7% in the B, V, R, and I band, respectively. The majority of the identified variable AGN are classified as Type 1 AGN, with only a handful of Type 2 AGN showing evidence for variability. The work done so far confirms that there are type and wavelength dependence of intra-night optical variability of AGN.

  • PDF

Intra-night optical variability of AGN in COSMOS field

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin;Kim, Dohyeong;Jun, Hyunsung David;Lee, Joon Hyeop;Pallerola, Mar Mezcua
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.45.1-45.1
    • /
    • 2017
  • Optical variability is one way to probe the nature of the central engine of AGN at smaller linear scales, and previous studies have shown that optical variability of AGN is more prevalent at longer timescales and at shorter wavelengths. To understand the properties and physical mechanism of variability, we are performing the KMTNet Active Nuclei Variability Survey (KANVaS). Especially, we investigated intra-night variability of AGN with KMTNet data which observed COSMOS field during 3 separate nights from 2015 to 2016 in B, V, R, and I bands. Each night was composed of 5, 9, and 11 epochs with 20-30 min cadence. To find AGN in the COSMOS field, we applied multi-wavelength selection methods. Using X-ray, mid-infrared, and radio selection methods, 50-60, 130-220, 20-40 number of AGN are detected, respectively. Achieving photometric uncertainty ~0.01mag by differential photometry, we employed a standard time-series analysis tool to identify variable AGN, chi-square test. Preliminary results indicate that there is no evidence of intra-night optical variability of AGN. It is possible that previous studies discovered intra-night variability used inappropriate photometric error. However, main reason seems that our targets have fainter magnitude (higher photometric error) than that of previous studies. To discover variability of AGN, we will investigate longer timescale variability of AGN.

  • PDF

SOURCE-FREQUENCY PHASE-REFERENCING OBSERVATION OF AGNS WITH KAVA USING SIMULTANEOUS DUAL-FREQUENCY RECEIVING

  • Zhao, Guang-Yao;Jung, Taehyun;Sohn, Bong Won;Kino, Motoki;Honma, Mareki;Dodson, Richard;Rioja, Maria;Han, Seog-Tae;Shibata, Katsunori;Byun, Do-Young;Akiyama, Kazunori;Algaba, Juan-Carlos;An, Tao;Cheng, Xiaopeng;Cho, Ilje;Cui, Yuzhu;Hada, Kazuhiro;Hodgson, Jeffrey A.;Jiang, Wu;Lee, Jee Won;Lee, Jeong Ae;Niinuma, Kotaro;Park, Jong-Ho;Ro, Hyunwook;Sawada-Satoh, Satoko;Shen, Zhi-Qiang;Tazaki, Fumie;Trippe, Sascha;Wajima, Kiyoaki;Zhang, Yingkang
    • 천문학회지
    • /
    • 제52권1호
    • /
    • pp.23-30
    • /
    • 2019
  • The KVN(Korean VLBI Network)-style simultaneous multi-frequency receiving mode is demonstrated to be promising for mm-VLBI observations. Recently, other Very long baseline interferometry (VLBI) facilities all over the globe start to implement compatible optics systems. Simultaneous dual/multi-frequency VLBI observations at mm wavelengths with international baselines are thus possible. In this paper, we present the results from the first successful simultaneous 22/43 GHz dual-frequency observation with KaVA(KVN and VERA array), including images and astrometric results. Our analysis shows that the newly implemented simultaneous receiving system has brought a significant extension of the coherence time of the 43 GHz visibility phases along the international baselines. The astrometric results obtained with KaVA are consistent with those obtained with the independent analysis of the KVN data. Our results thus confirm the good performance of the simultaneous receiving systems for the nonKVN stations. Future simultaneous observations with more global stations bring even higher sensitivity and micro-arcsecond level astrometric measurements of the targets.

세포-신경계-혈류역학 시스템 통합모델에 의한 심장역학 분석 (Computational analysis of heart mechanics using a cell-autonomic nerve control-hemodynamic system coupled model)

  • 전형민;심은보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2941-2946
    • /
    • 2007
  • A model of the cardiovascular system coupling cell, hemodynamics and autonomic nervecontrol function is proposed for analyzing heart mechanics. We developed a comprehensive cardiovascular model with multi-physics and multi-scale characteristics that simulates the physiological events from membrane excitation of a cardiac cell to contraction of the human heart and systemic blood circulation and ultimately to autonomic nerve control. Using this model, we delineatedthe cellular mechanism of heart contractility mediated by nerve control function. To verify the integrated method, we simulated a 10% hemorrhage, which involves cardiac cell mechanics, circulatory hemodynamics, and nerve control function. The computed and experimental results were compared. Using this methodology, the state of cardiac contractility, influenced by diverse properties such as the afterload and nerve control systems, is easily assessed in an integrated manner.

  • PDF

Multi-physics analysis for the design and development of micro-thermoelectric coolers

  • Han, Seung-Woo;Hasan, MD Anwarul;Kim, Jung-Yup;Lee, Hyun-Woo;Lee, Kong-Hoon;Kim, Oo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.139-144
    • /
    • 2005
  • A rigorous research is underway in our team, for the design and development of high figure of merits (ZT= 1.5${\sim}$2.0) micro-thermoelectric coolers. This paper discusses the fabrication process that we are using for developing the $Sb_2Te_3-Bi_2Te_3$ micro-thermoelectric cooling modules. It describes how to obtain the mechanical properties of the thin film TEC elements and reports the results of an equation-based multiphysics modeling of the micro-TEC modules. In this study the thermoelectric thin films were deposited on Si substrates using co-sputtering method. The physical mechanical properties of the prepared films were measured by nanoindentation testing method while the thermal and electrical properties required for modeling were obtained from existing literature. A finite element model was developed using an equation-based multiphysics modeling by the commercial finite element code FEMLAB. The model was solved for different operating conditions. The temperature and the stress distributions in the P and N elements of the TEC as well as in the metal connector were obtained. The temperature distributions of the system obtained from simulation results showed good agreement with the analytical results existing in literature. In addition, it was found that the maximum stress in the system occurs at the bonding part of the TEC i.e. between the metal connectors and TE elements of the module.

  • PDF

독립적 하부 시스템에 의한 다분야 통합 최적설계 (Mathematical Validation of Multidisciplinary Design Optimization Based on Independent Subspaces)

  • 신문균;박경진
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.109-117
    • /
    • 2004
  • Optimization has been successfully applied to systems with a single discipline. As many disciplines are involved in coupled fashion, MDO (multidisciplinary design optimization) technology has been developed. MDO algorithms are trying to solve the coupled aspects generated from interdisciplinary relationship. In a general MDO algorithms, a large design problem is decomposed into small ones which can be easily solved. Although various methods have been proposed for MDO, the research is still in the early stage. This research proposes a new MDO method which is named as MDOIS (Multidisciplinary Design Optimization Based on Independent Subspaces). Many real engineering problems consist of physically separate components and they can be independently designed. The inter-relationship occurs through coupled physics. MDOIS is developed for such problems. In MDOIS, a large system is decomposed into small subsystems. The coupled aspects are solved via system analysis which solves the coupled physics. The algorithm is mathematically validated by showing that the solution satisfies the Karush-Kuhn-Tucker condition.