• Title/Summary/Keyword: Multi-Network

Search Result 4,655, Processing Time 0.034 seconds

Systems Biology - A Pivotal Research Methodology for Understanding the Mechanisms of Traditional Medicine

  • Lee, Soojin
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.11-18
    • /
    • 2015
  • Objectives: Systems biology is a novel subject in the field of life science that aims at a systems' level understanding of biological systems. Because of the significant progress in high-throughput technologies and molecular biology, systems biology occupies an important place in research during the post-genome era. Methods: The characteristics of systems biology and its applicability to traditional medicine research have been discussed from three points of view: data and databases, network analysis and inference, and modeling and systems prediction. Results: The existing databases are mostly associated with medicinal herbs and their activities, but new databases reflecting clinical situations and platforms to extract, visualize and analyze data easily need to be constructed. Network pharmacology is a key element of systems biology, so addressing the multi-component, multi-target aspect of pharmacology is important. Studies of network pharmacology highlight the drug target network and network target. Mathematical modeling and simulation are just in their infancy, but mathematical modeling of dynamic biological processes is a central aspect of systems biology. Computational simulations allow structured systems and their functional properties to be understood and the effects of herbal medicines in clinical situations to be predicted. Conclusion: Systems biology based on a holistic approach is a pivotal research methodology for understanding the mechanisms of traditional medicine. If systems biology is to be incorporated into traditional medicine, computational technologies and holistic insights need to be integrated.

An amplify-and-forward relaying scheme based on network coding for Deep space communication

  • Guo, Wangmei;Zhang, Junhua;Feng, Guiguo;Zhu, Kaijian;Zhang, Jixiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.670-683
    • /
    • 2016
  • Network coding, as a new technique to improve the throughput, is studied combined with multi-relay model in this paper to address the challenges of long distance and power limit in deep space communication. First, an amplify-and-forward relaying approach based on analog network coding (AFNC) is proposed in multi-relay network to improve the capacity for deep space communication system, where multiple relays are introduced to overcome the long distance link loss. The design of amplification coefficients is mathematically formulated as the optimization problem of maximizing SNR under sum-power constraint over relays. Then for a dual-hop relay network with a single source, the optimal amplification coefficients are derived when the multiple relays introduce non-coherent noise. Through theoretic analysis and simulation, it is shown that our approach can achieve the maximum transmission rate and perform better over single link transmission for deep space communication.

The Minimum-cost Network Selection Scheme to Guarantee the Periodic Transmission Opportunity in the Multi-band Maritime Communication System (멀티밴드 해양통신망에서 전송주기를 보장하는 최소 비용의 망 선택 기법)

  • Cho, Ku-Min;Yun, Chang-Ho;Kang, Chung-G
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.139-148
    • /
    • 2011
  • This paper presents the minimum-cost network selection scheme which determines the transmission instance in the multi-band maritime communication system, so that the shipment-related real-time information can be transmitted within the maximum allowed period. The transmission instances and the corresponding network selection process are modeled by a Markov Decision Process (MDP), for the channel model in the 2-state Markov chain, which can be solved by stochastic dynamic programming. It derives the minimum-cost network selection rule, which can reduce the network cost significantly as compared with the straight-forward scheme with a periodic transmission.

Indoor Test of a Multi-band Network Selection System for Maritime Networks (해상멀티대역 네트워크 선택기 시스템 실증 연구)

  • Cho, A-ra
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.652-655
    • /
    • 2017
  • As maritime information and communication technology has been developing and the demands for various kinds of application services has been increasing nowadays, the multi-band maritime networks combining available multiple radio networks has been introduced. We have previously proposed a multi-band network selection(MNS) system which operates in the middleware layer and selects the best available network seamlessly. In this paper we develop MNS server software, network interfaces, and application program. The functionalities of the MNS system, including updating network status, connecting to heterogeneous networks, and communicating in the best network are also verified via indoor test.

  • PDF

Cluster-Based Multi-Channel Algorithm in SAN Environments (SAN 환경에서 클러스터 기반의 멀티채널 알고리즘)

  • Kong, Joon-Ik;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.964-973
    • /
    • 2015
  • Ship Area Network(SAN) can monitor the status of ship in real time and minimize the maintenance costs by connecting various devices to the network. In particular, among researches on SAN, Wireless Sensor Network using sensor nodes that is low-cost, low-power, and multifunctional has a number of advantages. In this paper, we propose cluster-based multi-channel algorithm considering the energy efficiency in wireless sensor network in a ship. The proposed algorithm shows the result of improvement of throughput and energy efficiency, because it reduces interference between clusters by using channel allocation algorithm that is distributed and dynamic.

Load Balancing Metric for a Mobile Router with Heterogeneous Network Interfaces (이기종 네트워크 인터페이스를 갖는 이동 라우터의 부하 균등 메트릭)

  • Na, TaeHeum;Park, PyungKoo;Ryu, HoYong;Park, Jaehyung;Hwang, Buhyun
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.983-987
    • /
    • 2017
  • Multi-homing mobile router separates network for user connection and network for internet access using various interfaces for internet access. This paper proposes a load balancing metric in order that multi-network mobile router distributes its traffic to one of several heterogeneous network interfaces. To evaluate the performance of the load balancing metric, experiments on traffic balancing is performed on real commercial networks were used in Korea and Hong Kong.

Multi-interface Wireless Mesh Network Testbed using Wireless Distribution System (무선 분산 시스템을 이용한 멀티 인터페이스 무선 메쉬 네트워크 테스트베드)

  • Yoon, Mi-kyung;Yang, Seung-chur;Kim, Jong-deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.87-90
    • /
    • 2009
  • Wireless Mesh Network(WMN) is wireless backbone networks technique which has ease of network configuration and cost of advantage. Recently, WNM released a new product, but most of existing research and technology analysis the performance through the simulation. This paper build the wireless mesh network testbed for actual situation. Testbed supports multi-channel multi-interface using bridge, the Wireless Distribution System and dynamic location-based routing protocol. This routing protocol strongly design against wireless interference using metric for link channel change and real distance. Then, the address of mesh clients assigned by the centralized address management server. Mesh clients is designed and implemented to manage network through Simple Network Management Protocol.

  • PDF

A Video Expression Recognition Method Based on Multi-mode Convolution Neural Network and Multiplicative Feature Fusion

  • Ren, Qun
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.556-570
    • /
    • 2021
  • The existing video expression recognition methods mainly focus on the spatial feature extraction of video expression images, but tend to ignore the dynamic features of video sequences. To solve this problem, a multi-mode convolution neural network method is proposed to effectively improve the performance of facial expression recognition in video. Firstly, OpenFace 2.0 is used to detect face images in video, and two deep convolution neural networks are used to extract spatiotemporal expression features. Furthermore, spatial convolution neural network is used to extract the spatial information features of each static expression image, and the dynamic information feature is extracted from the optical flow information of multiple expression images based on temporal convolution neural network. Then, the spatiotemporal features learned by the two deep convolution neural networks are fused by multiplication. Finally, the fused features are input into support vector machine to realize the facial expression classification. Experimental results show that the recognition accuracy of the proposed method can reach 64.57% and 60.89%, respectively on RML and Baum-ls datasets. It is better than that of other contrast methods.

A Study on Cluster Lifetime in Multi-HopWireless Sensor Networks with Cooperative MISO Scheme

  • Huang, Zheng;Okada, Hiraku;Kobayashi, Kentaro;Katayama, Masaaki
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.443-450
    • /
    • 2012
  • As for cluster-based wireless sensor networks (WSNs), cluster lifetime is one of the most important subjects in recent researches. Besides reducing the energy consumptions of the clusters, it is necessary to make the clusters achieve equal lifetimes so that the whole network can survive longer. In this paper, we focus on the cluster lifetimes in multi-hop WSNs with cooperative multi-input single-output scheme. With a simplified model of multi-hop WSNs, we change the transmission schemes, the sizes and transmission distances of clusters to investigate their effects on the cluster lifetimes. Furthermore, linear and uniform data aggregations are considered in our model. As a result, we analyze the cluster lifetimes in different situations and discuss the requirements on the sizes and transmission distances of clusters for equal lifetimes.

A Study on Optimal Scheduling of Multi-Spinner's Manufacturing Process Using Artificial Neural Network (인공 신경회로망을 이용한 Multi-Spinner의 생산 공정 최적 스케줄링에 관한 연구)

  • Jo, Yong-Cheol;Jo, Hyeon-Chan;Kim, Jong-Won;Jang, Ryang;Jeon, Heung-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.157-160
    • /
    • 2008
  • Multi-Spinner 장비는 반도체 제조공정과정 중 Photo공정에서 노광(Exposure)공정을 제외한 PR 형성공정 및 현상(Development)을 수행하는 복합적인 장비이다. 이 복합적인 Multi-Spinner 장비의 각 수행 과정에서는 웨이퍼를 이동 작업하는데 있어서 이동경로를 최적 스케줄링 한다면 반도체 생산량 향상에 크게 도움이 된다. Multi-Spinner 장비내의 각 공정과정들은 PR 형성공정 및 현상 공정 순서에 맞게 순차적으로 진행되며, 이 과정들을 위해 이송 로봇이 순차적으로 웨이퍼를 이동하며, 이 과정에서 일정의 대기시간이 발생하게 된다. 대기시간을 줄이기 위해 C/S 유닛에 담겨 있는 수십 장의 웨이퍼들을 다음 공정으로 이송 시 이동경로의 최적 스케줄링이 필요하다. 본 논문은 스케줄링 문제를 풀기 위해 인공 신경회로망(Artificial Neural Network)을 이용한 최적 스케줄링 방법을 제안한다.

  • PDF