• Title/Summary/Keyword: Multi-Modal Emotion Recognition

Search Result 14, Processing Time 0.027 seconds

Emotion Recognition Using Tone and Tempo Based on Voice for IoT (IoT를 위한 음성신호 기반의 톤, 템포 특징벡터를 이용한 감정인식)

  • Byun, Sung-Woo;Lee, Seok-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.116-121
    • /
    • 2016
  • In Internet of things (IoT) area, researches on recognizing human emotion are increasing recently. Generally, multi-modal features like facial images, bio-signals and voice signals are used for the emotion recognition. Among the multi-modal features, voice signals are the most convenient for acquisition. This paper proposes an emotion recognition method using tone and tempo based on voice. For this, we make voice databases from broadcasting media contents. Emotion recognition tests are carried out by extracted tone and tempo features from the voice databases. The result shows noticeable improvement of accuracy in comparison to conventional methods using only pitch.

Speech and Textual Data Fusion for Emotion Detection: A Multimodal Deep Learning Approach (감정 인지를 위한 음성 및 텍스트 데이터 퓨전: 다중 모달 딥 러닝 접근법)

  • Edward Dwijayanto Cahyadi;Mi-Hwa Song
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.526-527
    • /
    • 2023
  • Speech emotion recognition(SER) is one of the interesting topics in the machine learning field. By developing multi-modal speech emotion recognition system, we can get numerous benefits. This paper explain about fusing BERT as the text recognizer and CNN as the speech recognizer to built a multi-modal SER system.

Development of Context Awareness and Service Reasoning Technique for Handicapped People (멀티 모달 감정인식 시스템 기반 상황인식 서비스 추론 기술 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.34-39
    • /
    • 2009
  • As a subjective recognition effect, human's emotion has impulsive characteristic and it expresses intentions and needs unconsciously. These are pregnant with information of the context about the ubiquitous computing environment or intelligent robot systems users. Such indicators which can aware the user's emotion are facial image, voice signal, biological signal spectrum and so on. In this paper, we generate the each result of facial and voice emotion recognition by using facial image and voice for the increasing convenience and efficiency of the emotion recognition. Also, we extract the feature which is the best fit information based on image and sound to upgrade emotion recognition rate and implement Multi-Modal Emotion recognition system based on feature fusion. Eventually, we propose the possibility of the ubiquitous computing service reasoning method based on Bayesian Network and ubiquitous context scenario in the ubiquitous computing environment by using result of emotion recognition.

Emotion Recognition Algorithm Based on Minimum Classification Error incorporating Multi-modal System (최소 분류 오차 기법과 멀티 모달 시스템을 이용한 감정 인식 알고리즘)

  • Lee, Kye-Hwan;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.76-81
    • /
    • 2009
  • We propose an effective emotion recognition algorithm based on the minimum classification error (MCE) incorporating multi-modal system The emotion recognition is performed based on a Gaussian mixture model (GMM) based on MCE method employing on log-likelihood. In particular, the reposed technique is based on the fusion of feature vectors based on voice signal and galvanic skin response (GSR) from the body sensor. The experimental results indicate that performance of the proposal approach based on MCE incorporating the multi-modal system outperforms the conventional approach.

Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild (준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘)

  • Kim, Dae Ha;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.351-360
    • /
    • 2018
  • Human emotion recognition is a research topic that is receiving continuous attention in computer vision and artificial intelligence domains. This paper proposes a method for classifying human emotions through multiple neural networks based on multi-modal signals which consist of image, landmark, and audio in a wild environment. The proposed method has the following features. First, the learning performance of the image-based network is greatly improved by employing both multi-task learning and semi-supervised learning using the spatio-temporal characteristic of videos. Second, a model for converting 1-dimensional (1D) landmark information of face into two-dimensional (2D) images, is newly proposed, and a CNN-LSTM network based on the model is proposed for better emotion recognition. Third, based on an observation that audio signals are often very effective for specific emotions, we propose an audio deep learning mechanism robust to the specific emotions. Finally, so-called emotion adaptive fusion is applied to enable synergy of multiple networks. The proposed network improves emotion classification performance by appropriately integrating existing supervised learning and semi-supervised learning networks. In the fifth attempt on the given test set in the EmotiW2017 challenge, the proposed method achieved a classification accuracy of 57.12%.

Development of Driver's Emotion and Attention Recognition System using Multi-modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 운전자의 감정 및 주의력 인식 기술 개발)

  • Han, Cheol-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.754-761
    • /
    • 2008
  • As the automobile industry and technologies are developed, driver's tend to more concern about service matters than mechanical matters. For this reason, interests about recognition of human knowledge and emotion to make safe and convenient driving environment for driver are increasing more and more. recognition of human knowledge and emotion are emotion engineering technology which has been studied since the late 1980s to provide people with human-friendly services. Emotion engineering technology analyzes people's emotion through their faces, voices and gestures, so if we use this technology for automobile, we can supply drivels with various kinds of service for each driver's situation and help them drive safely. Furthermore, we can prevent accidents which are caused by careless driving or dozing off while driving by recognizing driver's gestures. the purpose of this paper is to develop a system which can recognize states of driver's emotion and attention for safe driving. First of all, we detect a signals of driver's emotion by using bio-motion signals, sleepiness and attention, and then we build several types of databases. by analyzing this databases, we find some special features about drivers' emotion, sleepiness and attention, and fuse the results through Multi-Modal method so that it is possible to develop the system.

Prototype of Emotion Recognition System for Treatment of Autistic Spectrum Disorder (자폐증 치료를 위한 감성인지 시스템 프로토타입)

  • Chung, Seong Youb
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • It is known that as many as 15-20 in 10,000 children are diagnosed with autistic spectrum disorder. A framework of the treatment system for children with autism using affective computing technologies was proposed by Chung and Yoon. In this paper, a prototype for the framework is proposed. It consists of emotion stimulating module, multi-modal bio-signal sensing module, treatment module using virtual reality, and emotion recognition module. Primitive experiments on emotion recognition show the usefulness of the proposed system.

  • PDF

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

Development for Multi-modal Realistic Experience I/O Interaction System (멀티모달 실감 경험 I/O 인터랙션 시스템 개발)

  • Park, Jae-Un;Whang, Min-Cheol;Lee, Jung-Nyun;Heo, Hwan;Jeong, Yong-Mu
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.627-636
    • /
    • 2011
  • The purpose of this study is to develop the multi-modal interaction system. This system provides realistic and an immersive experience through multi-modal interaction. The system recognizes user behavior, intention, and attention, which overcomes the limitations of uni-modal interaction. The multi-modal interaction system is based upon gesture interaction methods, intuitive gesture interaction and attention evaluation technology. The gesture interaction methods were based on the sensors that were selected to analyze the accuracy of the 3-D gesture recognition technology using meta-analysis. The elements of intuitive gesture interaction were reflected through the results of experiments. The attention evaluation technology was developed by the physiological signal analysis. This system is divided into 3 modules; a motion cognitive system, an eye gaze detecting system, and a bio-reaction sensing system. The first module is the motion cognitive system which uses the accelerator sensor and flexible sensors to recognize hand and finger movements of the user. The second module is an eye gaze detecting system that detects pupil movements and reactions. The final module consists of a bio-reaction sensing system or attention evaluating system which tracks cardiovascular and skin temperature reactions. This study will be used for the development of realistic digital entertainment technology.

  • PDF

Development of a Depression Prevention Platform using Multi-modal Emotion Recognition AI Technology (멀티모달 감정 인식 AI 기술을 이용한 우울증 예방 플랫폼 구축)

  • HyunBeen Jang;UiHyun Cho;SuYeon Kwon;Sun Min Lim;Selin Cho;JeongEun Nah
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.916-917
    • /
    • 2023
  • 본 연구는 사용자의 음성 패턴 분석과 텍스트 분류를 중심으로 이루어지는 한국어 감정 인식 작업을 개선하기 위해 Macaron Net 텍스트 모델의 결과와 MFCC 음성 모델의 결과 가중치 합을 분류하여 최종 감정을 판단하는 기존 82.9%였던 정확도를 텍스트 모델 기준 87.0%, Multi-Modal 모델 기준 88.0%로 개선한 모델을 제안한다. 해당 모델을 우울증 예방 플랫폼의 핵심 모델에 탑재하여 covid-19 팬데믹 이후 사회의 문제점으로 부상한 우울증 문제 해소에 기여 하고자 한다.