• Title/Summary/Keyword: Multi-Layer Perceptron Neural Network

Search Result 247, Processing Time 0.031 seconds

A Study on the Pattern Classificatiion of the EMG Signals Using Neural Network and Probabilistic Model (신경회로망과 확률모델을 이용한 근전도신호의 패턴분류에 관한 연구)

  • 장영건;권장우;장원환;장원석;홍성홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.831-841
    • /
    • 1991
  • A combined model of probabilistic and MLP(multi layer perceptron) model is proposed for the pattern classification of EMG( electromyogram) signals. The MLP model has a problem of not guaranteeing the global minima of error and different quality of approximations to Bayesian probabilities. The probabilistic model is, however, closely related to the estimation error of model parameters and the fidelity of assumptions. A proper combination of these will reduce the effects of the problems and be robust to input variations. Proposed model is able to get the MAP(maximum a posteriori probability) in the probabilistic model by estimating a priori probability distribution using the MLP model adaptively. This method minimize the error probability of the probabilistic model as long as the realization of the MLP model is optimal, and this is a good combination of the probabilistic model and the MLP model for the usage of MLP model reliability. Simulation results show the benefit of the proposed model compared to use the Mlp and the probabilistic model seperately and the average calculation time fro classification is about 50ms in the case of combined motion using an IBM PC 25 MHz 386model.

  • PDF

GNSS NLOS Signal Classifier with Successive Correlation Outputs using CNN

  • Sangjae, Cho;Jeong-Hoon, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The problem of classifying a non-line-of-sight (NLOS) signal in a multipath channel is important to improve global navigation satellite system (GNSS) positioning accuracy in urban areas. Conventional deep learning-based NLOS signal classifiers use GNSS satellite measurements such as the carrier-to-noise-density ratio (CN_0), pseudorange, and elevation angle as inputs. However, there is a computational inefficiency with use of these measurements and the NLOS signal features expressed by the measurements are limited. In this paper, we propose a Convolutional Neural Network (CNN)-based NLOS signal classifier that receives successive Auto-correlation function (ACF) outputs according to a time-series, which is the most primitive output of GNSS signal processing. We compared the proposed classifier to other DL-based NLOS signal classifiers such as a multi-layer perceptron (MLP) and Gated Recurrent Unit (GRU) to show the superiority of the proposed classifier. The results show the proposed classifier does not require the navigation data extraction stage to classify the NLOS signals, and it has been verified that it has the best detection performance among all compared classifiers, with an accuracy of up to 97%.

New Temporal Features for Cardiac Disorder Classification by Heart Sound (심음 기반의 심장질환 분류를 위한 새로운 시간영역 특징)

  • Kwak, Chul;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • We improve the performance of cardiac disorder classification by adding new temporal features extracted from continuous heart sound signals. We add three kinds of novel temporal features to a conventional feature based on mel-frequency cepstral coefficients (MFCC): Heart sound envelope, murmur probabilities, and murmur amplitude variation. In cardiac disorder classification and detection experiments, we evaluate the contribution of the proposed features to classification accuracy and select proper temporal features using the sequential feature selection method. The selected features are shown to improve classification accuracy significantly and consistently for neural network-based pattern classifiers such as multi-layer perceptron (MLP), support vector machine (SVM), and extreme learning machine (ELM).

Automatic Change Detection of MODIS NDVI using Artificial Neural Networks (신경망을 이용한 MODIS NDVI의 자동화 변화탐지 기법)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • Natural Vegetation cover, which is very important earth resource, has been significantly altered by humans in some manner. Since this has currently resulted in a significant effect on global climate, various studies on vegetation environment including forest have been performed and the results are utilized in policy decision making. Remotely sensed data can detect, identify and map vegetation cover change based on the analysis of spectral characteristics and thus are vigorously utilized for monitoring vegetation resources. Among various vegetation indices extracted from spectral reponses of remotely sensed data, NDVI is the most popular index which provides a measure of how much photosynthetically active vegetation is present in the scene. In this study, for change detection in vegetation cover, a Multi-layer Perceptron Network (MLPN) as a nonparametric approach has been designed and applied to MODIS/Aqua vegetation indices 16-day L3 global 250m SIN Grid(v005) (MYD13Q1) data. The feature vector for change detection is constructed with the direct NDVI diffenrence at a pixel as well as the differences in some subset of NDVI series data. The research covered 5 years (2006-20110) over Korean peninsular.

A Computational Intelligence Based Online Data Imputation Method: An Application For Banking

  • Nishanth, Kancherla Jonah;Ravi, Vadlamani
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.633-650
    • /
    • 2013
  • All the imputation techniques proposed so far in literature for data imputation are offline techniques as they require a number of iterations to learn the characteristics of data during training and they also consume a lot of computational time. Hence, these techniques are not suitable for applications that require the imputation to be performed on demand and near real-time. The paper proposes a computational intelligence based architecture for online data imputation and extended versions of an existing offline data imputation method as well. The proposed online imputation technique has 2 stages. In stage 1, Evolving Clustering Method (ECM) is used to replace the missing values with cluster centers, as part of the local learning strategy. Stage 2 refines the resultant approximate values using a General Regression Neural Network (GRNN) as part of the global approximation strategy. We also propose extended versions of an existing offline imputation technique. The offline imputation techniques employ K-Means or K-Medoids and Multi Layer Perceptron (MLP)or GRNN in Stage-1and Stage-2respectively. Several experiments were conducted on 8benchmark datasets and 4 bank related datasets to assess the effectiveness of the proposed online and offline imputation techniques. In terms of Mean Absolute Percentage Error (MAPE), the results indicate that the difference between the proposed best offline imputation method viz., K-Medoids+GRNN and the proposed online imputation method viz., ECM+GRNN is statistically insignificant at a 1% level of significance. Consequently, the proposed online technique, being less expensive and faster, can be employed for imputation instead of the existing and proposed offline imputation techniques. This is the significant outcome of the study. Furthermore, GRNN in stage-2 uniformly reduced MAPE values in both offline and online imputation methods on all datasets.

A study on the Method of the Keyword Spotting Recognition in the Continuous speech using Neural Network (신경 회로망을 이용한 연속 음성에서의 keyword spotting 인식 방식에 관한 연구)

  • Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.43-49
    • /
    • 1996
  • This research proposes a system for speaker independent Korean continuous speech recognition with 247 DDD area names using keyword spotting technique. The applied recognition algorithm is the Dynamic Programming Neural Network(DPNN) based on the integration of DP and multi-layer perceptron as model that solves time axis distortion and spectral pattern variation in the speech. To improve performance, we classify word model into keyword model and non-keyword model. We make an experiment on postprocessing procedure for the evaluation of system performance. Experiment results are as follows. The recognition rate of the isolated word is 93.45% in speaker dependent case. The recognition rate of the isolated word is 84.05% in speaker independent case. The recognition rate of simple dialogic sentence in keyword spotting experiment is 77.34% as speaker dependent, and 70.63% as speaker independent.

  • PDF

Run-off Forecasting using Distributed model and Artificial Neural Network model (분포형 모형과 인공신경망을 활용한 유출 예측)

  • Kim, Won Jin;Lee, Yong Gwan;Jung, Chung Gil;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.35-35
    • /
    • 2019
  • 본 연구에서는 분포형 수문 모형 Drying Stream Assessment Tool and Water Flow Tracking (DrySAT-WTF)을 활용해 우리나라의 1976년부터 2015년까지의 유출량을 산정하고, 이를 다층퍼셉트론(Multi Layer Perceptron) 인경신경망 모형(Artificial Neural Network Model)에 적용해 미래 유출을 예측하였다. DrySAT-WFT은 전국 표준 유역을 대상으로 하천 건천화 원인 추적 및 평가를 위해 개발된 모형으로 유출모의를 위한 기상자료 외에 건천화 영향 요소를 고려하기 위한 산림 높이, 도로망, 지하수 이용량, 토지이용, 토심 변화에 대한 DB를 적용 가능한 것이 특징이다. DrySAT-WFT를 위한 기상자료로 모의 기간에 대한 일별 강우량, 상대습도, 평균풍속, 평균 및 최고, 최저 기온, 일조시간을 구축하였으며, 연대별 건천화 영향 요소 DB를 구축하여 적용하였다. 전국 다목적 댐 보 12지점의 유량을 활용해 모형의 보정(2005-2010) 및 검증(2011-2015)을 실시한 결과, 평균 결정계수(Coefficient of determination, $R^2$)는 0.76, 모형효율성계수(Nash-Sutcliffe efficiency, NSE)는 0.62, 평균제곱근오차(average root mean square error, RMSE)는 3.09로 신뢰성 있는 유출 모의 결과를 나타내었다. 미래 유출량 예측을 위한 MLP-ANN은 1976년부터 2015년까지의 유출 모의 결과를 Training Set으로 훈련하여 $R^2$가 0.5 이상이 되어 신뢰성을 확보하였고, 2016년부터 2018년까지의 기간을 1개월 단위로 실제 유출량과 예측 유출량을 비교하며 적용성을 검증 및 향상시켰다.

  • PDF

Performance Comparison of Machine Learning Algorithms for TAB Digit Recognition (타브 숫자 인식을 위한 기계 학습 알고리즘의 성능 비교)

  • Heo, Jaehyeok;Lee, Hyunjung;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • In this paper, the classification performance of learning algorithms is compared for TAB digit recognition. The TAB digits that are segmented from TAB musical notes contain TAB lines and musical symbols. The labeling method and non-linear filter are designed and applied to extract fret digits only. The shift operation of the 4 directions is applied to generate more data. The selected models are Bayesian classifier, support vector machine, prototype based learning, multi-layer perceptron, and convolutional neural network. The result shows that the mean accuracy of the Bayesian classifier is about 85.0% while that of the others reaches more than 99.0%. In addition, the convolutional neural network outperforms the others in terms of generalization and the step of the data preprocessing.

Vehicle Color Recognition Using Neural-Network (신경회로망을 이용한 차량의 색상 인식)

  • Kim, Tae-hyung;Lee, Jung-hwa;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.731-734
    • /
    • 2009
  • In this paper, we propose the method the vehicle color recognizing in the image including a vehicle. In an image, the color feature vector of a vehicle is extracted and by using the backpropagation learning algorithm, that is the multi-layer perceptron, the recognized vehicle color. By using the RGB and HSI color model the feature vector used as the input of the backpropagation learning algorithm is the feature of the color used as the input of the neural network. The color of a vehicle recognizes as the white, the silver color, the black, the red, the yellow, the blue, and the green among the color of the vehicle most very much found out as 7 colors. By using the image including a vehicle for the performance evaluation of the method proposing, the color recognition performance was experimented.

  • PDF

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.