• Title/Summary/Keyword: Multi-Joint Robot

Search Result 105, Processing Time 0.026 seconds

Adaptive Model Reference Control Based on Takagi-Sugeno Fuzzy Models with Applications to Flexible Joint Manipulators

  • Lee, Jongbae;Lim, Joon-hong;Park, Chang-Woo;Kim, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.337-346
    • /
    • 2004
  • The control scheme using fuzzy modeling and Parallel Distributed Compensation (PDC) concept is proposed to provide asymptotic tracking of a reference signal for the flexible joint manipulators with uncertain parameters. From Lyapunov stability analysis and simulation results, the developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop multi-input/multi-output system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

A Study on Trajectory Tracking Control of Field Robot

  • Seo, Woo-Seog;Kim, Sung-Su;Yang, Soon-Yong;Lee, Byung-Ryong;Ahn, Kyung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.132.4-132
    • /
    • 2001
  • Field robot represented by excavator can be applied for various kinds of working in manufacturing, construction, agriculture etc. because of the flexibility of its multi-joint mechanism and the high power of hydraulic actuators. In general, the dynamics of field robot have strong coupling, various kinds of non-linearity, and time varying parameters according to working conditions. Therefore, it is very difficult to describe the system well, and design controller systematically based on its model. This paper established the mathematical model of field robot driven by electro-hydraulic servomechanism and constructed the adaptive control system robust to external load variations. The proposed control system for the field robot was evaluated by the computer simulation, and the performance results of trajectory tracking were compared with that of PID control system.

  • PDF

A Study on Rigid body Placement Task of based on Robot Vision System (로봇 비젼시스템을 이용한 강체 배치 실험에 대한 연구)

  • 장완식;신광수;안철봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.100-107
    • /
    • 1998
  • This paper presents the development of estimation model and control method based on the new robot vision. This proposed control method is accomplished using the sequential estimation scheme that permits placement of the rigid body in each of the two-dimensional image planes of monitoring cameras. Estimation model with six parameters is developed based on the model that generalizes known 4-axis scara robot kinematics to accommodate unknown relative camera position and orientation, etc. Based on the estimated parameters, depending on each camera the joint angle of robot is estimated by the iteration method. The method is experimentally tested in two ways, the estimation model test and a three-dimensional rigid body placement task. Three results show that control scheme used is precise and robust. This feature can open the door to a range of application of multi-axis robot such as assembly and welding.

  • PDF

Robust control of a robot manipulator by means of sliding observers

  • Iwai, Z.;Mano, K.;Ohiomo, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1075-1079
    • /
    • 1989
  • In this paper a robust control design is developed for the control of a multi-joint manipulators using sliding observer. The sliding observer is introduced to estimate the angular velocity of the links under the disturbance input. The feedback control is designed by the use of the estimated value of the angular velocity .theta.. The VSS control laws is introduced to ensure the robustness concerning the disturbance inputs. To illustrate the effectiveness of the proposed method, a computer simulation is performed for a two-joint manipulator.

  • PDF

A nonlinear programming approach to collision-avoidance trajectory planning of multiple robots

  • Suh, Suk-Hwan;Kim, Myung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.635-642
    • /
    • 1989
  • We formulated the multi-robot trajectory problem into a series of NLP problem, each of which is that of finding the optimal tip positions of the robots for the next time step. The NLP problem is composed of an objective function and three constraints, namely: a) Joint position limits, b) Joint velocity limits, and c) Collision-avoidance constraints. By solving a series of NLP problem, optimally coordinated trajectories can be determined without requiring any prior path information. This is a novel departure from the previous approach in which either all paths or at least one path is assumed to be given. Practical application of the developed method is for optimal synthesis of multiple robot trajectories in off-line. To test the validity and effectiveness of the method, numerical examples are illustrated.

  • PDF

Kinematic Analysis of a Legged Walking Robot Based on Four-bar Linkage and Jansen Mechanism (4절 링크 이론과 얀센 메커니즘을 기반으로 한 보행 로봇의 운동학 해석)

  • Kim, Sun-Wook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.159-164
    • /
    • 2011
  • In this study, a crab robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism, and its kinematics is analysed. A vision camera is attached to the mechanism, which makes the proposed robot a kind of biologically inspired robot for image acquisition. Three ultrasonic sensors are adopted for obstacle avoidance. In addition, the biologically inspired robot can achieve the mission appointed by a programmer outside, based on RF and Blue-tooth communication module. For the design and implementation of a crab robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

A study on the rigid bOdy placement task of robot system based on the computer vision system (컴퓨터 비젼시스템을 이용한 로봇시스템의 강체 배치 실험에 대한 연구)

  • 장완식;유창규;신광수;김호윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1114-1119
    • /
    • 1995
  • This paper presents the development of estimation model and control method based on the new computer vision. This proposed control method is accomplished using a sequential estimation scheme that permits placement of the rigid body in each of the two-dimensional image planes of monitoring cameras. Estimation model with six parameters is developed based on a model that generalizes known 4-axis scara robot kinematics to accommodate unknown relative camera position and orientation, etc. Based on the estimated parameters,depending on each camers the joint angle of robot is estimated by the iteration method. The method is tested experimentally in two ways, the estimation model test and a three-dimensional rigid body placement task. Three results show that control scheme used is precise and robust. This feature can open the door to a range of application of multi-axis robot such as assembly and welding.

  • PDF

Locomotions of a Biped Robot: Static vs. Dynamic Gaits (이족 로봇의 위치 이동: 정보행 대 동보행)

  • Lim Seung-Chul;Ko In-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.643-652
    • /
    • 2006
  • This paper is concerned with computer simulations of a biped robot walking in static and dynamic gaits. To this end, a three-dimensional robot is considered possessing a torso and two identical legs of a typical design. For such limbs, a set of inverse kinematic solutions is analytically derived between the torso and the feet. Specific walking patterns are off-line generated meeting stability based on the VPCG or ZMP condition. Subsequently, to verify whether the robot can walk as planned in the presence of mass and ground effects, a multi-body dynamics CAE code has been applied to the resulting joint motions determined by inverse kinematics. As a result, the key parameters to successful gaits could be identified including inherent characteristics as well. Upon comparisons between the two types of gaits, dynamic gaits are concluded more desirable for larger humaniods.

A Study on Robust Controller Design of Multi-Joint Robot Manipulator Using Adaptive Control (적응제어기법에 의한 다관절 로보트 매니퓰레이터의 견실한 제어기 설계에 관한 연구)

  • Han, Sung-Hyun;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.108-118
    • /
    • 1989
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonliearity and parameter uncertainty in robot dynamics model. In this paper, an adaptive control scheme for a robot manipulator is proposed to design robust controller using model reference adaptive control technique and hyperstability theory but it does away with] assumption that the process is characterized by a linear model remaining time invariant during the adaptation process. The performance of controller is demonstrated by the simulation about position and speed control of a six-link manipulator with disturbance and payload variation.

  • PDF

A Study on Improving Performance Characteristic of Multi-D.O.F Spherical Wheel Motor (다자유도 모터의 구동특성 개선을 위한 연구)

  • Kang, Dong-Woo;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.6-8
    • /
    • 2008
  • Electrical machineries have been developed as following with various and high technical application in these days. Especially the robot is integrated system including mechanical structure, electronic control, and electrical technology. The robot system is not compact and has not natural motion like human, although the technology of robot has been developing continuously. The spherical wheel motor is useful electric machine for using robot joint as operation of 3-degrees of freedom. In this paper, a permanent magnet spherical wheel motor is introduced and performance characteristics are analyzed for improving of operation stability.

  • PDF