• Title/Summary/Keyword: Multi-Isocenter

Search Result 14, Processing Time 0.025 seconds

Arrangement and analysis of multi-isocenter based on 3-D spatial unit in stereotactic radiosurgery (정위적 방사선 수술시 3차원적 공간상의 체적소에 기반한 회전중심점들(Multi-isocenter)의 표적내 자동적 배치 및 분석)

  • Choi, Kyoung-Sik;Oh, Seung-Jong;Lee, Jeong-Woo;Suh, Tae-Suk;Choe, Bo-Young;Kim, Moon-Chan
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.75-77
    • /
    • 2004
  • Stereotactic radiosurgery(SRS) is a technique to deliver a high dose to a particular target region and a low dose to the critical organ using only one or a few irradiations while the patient is fixed with a stereotactic frame. The optimized plan is decided by repetitive work to combine the beam parameters and identify prescribed doses level in a tumor, which is usually called a trial and error method. This requires a great deal of time, effort, and experience. Therefore, we developed the automatic arrangement of multi-isocenter within irregularly shaped tumor. At the arbitrary targets, which is this method based on the voxel unit of the space, well satisfies the dose conformity and dose homogeneity to the targets relative to the RTOG radiosurgery plan guidelines

  • PDF

Radiation Dose Accuracy 81 the Isocenter : Standard Stereotactic Radiosurgery Technique Developed at Seoul National University Hospital (서울대학교병원형 방사선수술 표준기법의 중심점 선량의 오차)

  • Shin Seong Soo;Kim Il Han;Ha Sung Whan;Park Charn Il;Kang Wee-Saing;Hur Sun Nyung
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.391-395
    • /
    • 2002
  • Purpose : To confirm the accuracy of the radiation dose at the isocenter by the standard linear accelerator-based stereotactic radiosurgery technique which was developed at Seoul National University Hospital. Materials and Methods : Radiation dosimetry was undertaken during standard 5-arc radiosurgery using 6 MV X-ray beam from CL2100C linac. The treatment head was attached with circular tertiary collimators of 10 and 20 mm diameter. We measured the absorbed dose at the isocenter of a multi-purpose phantom using two kinds of detector : a 0.125 co ionization chamber and a silicon diode detector. Results : The dose differences at each arc plane between the planned dose and the measured dose at the isocenter raged from $-0.73\%\;to\;-2.69\%$ with the 0.125 cc ion chamber, and from $-1.29\%\;to\;-2.91\%$ with the diode detector during radiosurgery with the tertiary collimator of 20 mm diameter. Those with the 10-mm tertiary collimator ranged from $-2.39\%\;to\;-4.25\%$ with the diode. Conclusion : The dose accuracy at the isocenter was ${\pm}3\%$. Therefore, further efforts such ws modification in processing of the archived image through DICOM3.0 format are required to lessen the dose difference.

Examination of Dose Change at the Junction at the Time of Treatment Using Multi-Isocenter Volumetric Modulated Arc Therapy (용적조절호형방사선치료(VMAT)의 다중치료중심(Multi- Isocenter)을 이용한 치료 시, 접합부(Junction)의 선량 변화에 대한 고찰)

  • Jung, Dong Min;Park, Kwang Soon;Ahn, Hyuk Jin;Choi, Yoon Won;Park, Byul Nim;Kwon, Yong Jae;Moon, Sung Gong;Lee, Jong Oon;Jeong, Tae Sik;Park, Ryeong Hwang;Kim, Se young;Kim, Mi Jung;Baek, Jong Geol;Cho, Jeong Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.9-14
    • /
    • 2021
  • This study examined dose change depending on the reposition error of the junction at the time of treatment with multi-isocenter volumetric modulated arc therapy. This study selected a random treatment region in the Arccheck Phantom and established the treatment plan for multi-isocenter volumetric modulated arc therapy. Then, after setting the error of the junction at 0 ~ 4 mm in the X (left), Y (upper), and Z (inner and outer) directions, the area was irradiated using a linear accelerator; the point doses and gamma indexes obtained through the Phantom were subsequently analyzed. It was found that when errors of 2 and 4 mm took place in the X and Y directions, the gamma pass rates (point doses) were 99.3% (2.085) and 98% (2.079 Gy) in the former direction and 98.5% (2.088) and 95.5% (2.093 Gy) in the latter direction, respectively. In addition, when errors of 1, 2, and 4 mm occurred in the inner and outer parts of the Z direction, the gamma pass rates (point doses) were found to be 94.8% (2.131), 82.6% (2.164), and 72.8% (2.22 Gy) in the former part and 93.4% (2.069), 90.6% (2.047), and 79.7% (1.962 Gy) in the latter part, respectively. In the X and Y directions, errors up to 4 mm were tolerable; however, in the Z direction, error values exceeding 1 mm were beyond the tolerance level. This suggests that for high and low dose areas, errors in the direction same as the progress direction in the treatment region have a more sensitive dose distribution. If the guidelines for set-up errors are established at the institutional level through continuous research in the future, it will be possible to provide good quality treatment using junctions.

Search of Characteristic for Dose Distribution Presented by Multi­isocentric Stereotactic Radiosurgical Plan Using Linear Accelerator (선형 가속기를 이용한 정위적 방사선 수술시 병소내 선량분포의 특성조사)

  • 최경식;오승종;이형구;최보영;전흥재;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.225-233
    • /
    • 2003
  • The goal of a radiation treatment plan is to deliver a homogeneous dose to a target with minimal irradiation of the adjacent normal tissues. Dose uniformity is especially important for stereotactic radiosurgery using a linear accelerator. The dose uniformity and high dose delivery of a single spherical dose distribution exceed 70%. This also results with a similar stereotactic radiosurgical plan using a Gamma Knife. The dose distribution produced in a stereotactic radiosurgical plan using a Gamma Knife and Linear accelerator is spherical, and the application of the sphere packing arrangement in a real radiosurgical plan requires much time and skill. In this study, we found a characteristic of dose distribution with transformation of beam parameters that must be considered in a radiosurgical plan for effective radiosurgery. First, we assumed a cylinder type tumor model and a cube type tumor model. Secondly, the results of the tumor models were compared and analyzed with dose profiles and DVH_(Dose Volume Histogram) representative dose distribution. We found the optimal composition of beam parameters_(i.e. collimator size, number of isocenter, gap of isocenters etc.), which allowed the tumor models to be involved in the isodose curve at a high level. In conclusion, the characteristics found in this study are helpful for improving the effectiveness and speed of a radiosurgical plan for stereotactic radiosurgery.

  • PDF

A study on the effect of collimator angle on PAN-Pelvis volumetric modulated arc therapy (VMAT) including junction (접합부를 포함한 PAN-전골반암 VMAT 치료 계획 시 콜리메이터 각도의 영향에 관한 고찰)

  • Kim, Hyeon Yeong;Chang, Nam Jun;Jung, Hae Youn;Jeong, Yun Ju;Won, Hui Su;Seok, Jin Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.61-71
    • /
    • 2020
  • Purpose: To investigate the effect of collimator angle on plan quality of PAN-Pelvis Multi-isocenter VMAT plan, dose reproducibility at the junction and impact on set-up error at the junction. Material and method: 10 adult patients with whole pelvis cancer including PAN were selected for the study. Using Trubeam STx equipped with HD MLC, we changed the collimator angle to 20°, 30°, and 45° except 10° which was the default collimator angle in the Eclipse(version 13.7) and all other treatment conditions were set to be the same for each patient and four plans were established also. To evaluate these plans, PTV coverage, coverage index(CVI) and homogeneity index (HI) were compared and clinical indicators for each treatment sites in normal tissues were analyzed. To evaluate dose reproducibility at the junction, the absolute dose was measured using a Falmer type ionization chamber and dose changes at the junction were evaluated by moving the position of the isocenter in and out 1~3mm and setting up the virtual volume at the junction. Result: CVI mean value was PTV-45 0.985±0.004, PTV-55 0.998±0.003 at 45° and HI mean value was PTV-45 1.140±0.074, and PTV-55 1.031±0.074 at 45° which were closest to 1. V20Gy of the kidneys decreased by 9.66% and average dose of bladder and V30 decreased by 1.88% and 2.16% at 45° compared to 10° for the critical organs. The dose value at the junction of the plan and the actual measured were within 0.3% and within tolerance. At the junction, due to set-up error the maximum dose increased to 14.56%, 9.88%, 8.03%, and 7.05%, at 10°, 20°, 30°, 45°, and the minimum dose decreased to 13.18%, 10.91%, 8.42%, and 4.53%, at 10°, 20°, 30°, 45° Conclusion: In terms of CVI, HI of PTV and critical organ protection, overall improved values were shown as the collimator angle increased. The impact on set-up error at the junction by collimator angle decreased as the angle increased and it will help improve the anxiety about the set up error. In conclusion, the collimator angle should be recognized as a factor that can affect the quality of the multi-isocenter VMAT plan and the dose at the junction, and be careful in setting the collimator angle in the treatment plan.

Development of Independent Target Approximation by Auto-computation of 3-D Distribution Units for Stereotactic Radiosurgery (정위적 방사선 수술시 3차원적 공간상 단위분포들의 자동계산법에 의한 간접적 병소 근사화 방법의 개발)

  • Choi Kyoung Sik;Oh Seung Jong;Lee Jeong Woo;Kim Jeung Kee;Suh Tae Suk;Choe Bo Young;Kim Moon Chan;Chung Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • The stereotactic radiosurgery (SRS) describes a method of delivering a high dose of radiation to a small tar-get volume in the brain, generally in a single fraction, while the dose delivered to the surrounding normal tissue should be minimized. To perform automatic plan of the SRS, a new method of multi-isocenter/shot linear accelerator (linac) and gamma knife (GK) radiosurgery treatment plan was developed, based on a physical lattice structure in target. The optimal radiosurgical plan had been constructed by many beam parameters in a linear accelerator or gamma knife-based radiation therapy. In this work, an isocenter/shot was modeled as a sphere, which is equal to the circular collimator/helmet hole size because the dimension of the 50% isodose level in the dose profile is similar to its size. In a computer-aided system, it accomplished first an automatic arrangement of multi-isocenter/shot considering two parameters such as positions and collimator/helmet sizes for each isocenter/shot. Simultaneously, an irregularly shaped target was approximated by cubic structures through computation of voxel units. The treatment planning method by the technique was evaluated as a dose distribution by dose volume histograms, dose conformity, and dose homogeneity to targets. For irregularly shaped targets, the new method performed optimal multi-isocenter packing, and it only took a few seconds in a computer-aided system. The targets were included in a more than 50% isodose curve. The dose conformity was ordinarily acceptable levels and the dose homogeneity was always less than 2.0, satisfying for various targets referred to Radiation Therapy Oncology Group (RTOG) SRS criteria. In conclusion, this approach by physical lattice structure could be a useful radiosurgical plan without restrictions in the various tumor shapes and the different modality techniques such as linac and GK for SRS.

  • PDF

치료중 실시간 모니터링을 위한 투과형 빔측정장치 개발

  • Kim, Jae-Hong;Swanepoel, M.W.;Dekock, E.A.;Park, Yeon-Su;Yang, Tae-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.315-315
    • /
    • 2010
  • 양성자 빔을 이용하여 두경부 암 치료를 South Africa의 iTHEMBA에서 시행하고 있다. 200 MeV의 양성자 빔라인으로부터 진공에서 대기로 인출하여 노즐을 통과하여 종양세포에 조사된다. 치료계획에 적합하게 빔에너지와 모양을 변환하고, 빔을 모니터링하는 기계적 장치들이 노즐에 구성된다. 빔라인에는 이온챔버, Steering Magnet, Multi-wire 이온챔버, Range trimmer plates, lead scattering plate, Double-wedge energy degrader, Multi-layer Faraday cup, Range modulator, Range monitor, occluding ring, Shielding collimators, Quadrant and monitor ionization chamber, Treatment collimator, 그리고 Wellhofer dosimetry tank로 구성되어 있다. 총길이는 6.6m이며 노즐 끝에서 환자의 isocenter 까지는 30cm 정도 아래에 위치한다. 상기의 배치를 갖는 시스템의 양성자 scattering system의 성능을 MCNPX v2.5.0 Monte Carlo simulation을 실시하였다. 또한 정확한 선량을 실시간으로 측정하는 방법인 투과형 검출기를 개발하여 치료와 빔 특성을 동시에 수행하는 기술개발연구가 보고되고 있다. 본 연구에서는 Multileaf Faraday Cup (MLPC) 검출기 설계구조와 데이터 측정방법에 관한 연구를 수행하고자 한다. 빔의 전송 방향으로 3개층의 $4{\times}4$ 배열의 구조로 48 channel의 전류값을 측정하여 입자빔의 분포를 실시간으로 관측하고, 측정된 전류는 ADC를 거쳐 치료계획에 의해 선택된 영역의 SOBP를 유지하도록 range modulation propeller를 조절하는 feed-back system을 갖춘 방사선치료빔 실시간 측정장치 개발에 관한 결과를 보고하고자 한다.

  • PDF

Verification of Target Position in Stereotactic Radiosurgery Based on Photon Knife System (Photon Knife 시스템에 근거한 뇌정위 방사선수술에서 표적위치 확인)

  • 최태진;김진희;김옥배
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.99-107
    • /
    • 2003
  • This study was performed to prepare the verification film for localizing beam-target position with the Photon Knife radiosurgery system (PKRS) using linear accelerator(Mitsubishi, Model ML-15MDX). We developed a laser calibration system using a reticle of transparent lucite to detect Inlet and outlet beams. We verified fixation of the second collimator with film mounted on a holder in the shape of an octagon block 5cm apart from the isocenter. The film was exposed to photon beams of linear accelerator at an interval of 45 degrees during the gantry movement. There were no shifts in the beam of the second collimator during gantry movement. We used a position marker which is designed a head-shaped small lead block and a 10 mm in diameter of steel bead in the plastic tube. The position marker helped to verify the beam directions with patient position in multi-arc and trans-multi-arc of PKRS The verification of beam alignments showed an average 0.8$\pm$0.26 mm discrepancy in LINAC-gram images of PKRS. In our study, the couch movement was $\pm$5 mm laterally, while it shook $\pm$ 2 mm toward the couch axis. The couch, however, was immediately returned to the initial site after shaking. Thus, we postulate that the beam-target position(s) should be verified with LINAC-gram in a stereotactic radiosurgery system to achieve the accuracy of beam-target alignment.

  • PDF

Evaluation of the Positional Accuracy of the Delivered Beams from the Target: A Phantom Study (방사선 치료에서 치료 표적과 조사 빔의 일치 정도 평가: 팬텀 연구)

  • Kang, Sei-Kwon;Cho, Byung-Chul;Cheong, Kwang-Ho;Ju, Ra-Hyeong;Kim, Su-Ssan;Kim, Kyoung-Ju;Choi, Sang-Gyu;Bae, Hoon-Sik;Lee, Re-Na;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.192-200
    • /
    • 2006
  • We evaluated the positional accuracy of the delivered beams to the target in a phantom by simulating the whole process of the radiation treatments Including CT scanning, planning and beam exposures with MLCs. For this purpose, a phantom was made to calibrate the alignment between the CT and the attached laser system. A new, convenient method was also devised to align the setup lasers in the treatment room. Film was used for the Identification of the delivered beam and analyzed with a homemade computer program. The positional differences between the target and the beam centers varied with the couch rotations. The accelerator we used showed a maximum discrepancy of 2.0 mm at the table angle of $295^{\circ}$. The same measurements based on the new isocenter from the Winston-Lutz test resulted in the maximum of 1.35 mm for all rotation angles. The evaluation of the differences between the target and the beam centers is useful for the treatment planning.

  • PDF

The Dosimetric Effects on Scallop Penumbra from Multi-leaf Collimator by Daily Patient Setup Error in Radiation Therapy with Photon (광자선 치료시 Setup 오차에 따르는 Multi-leaf Collimator의 Scallop Penumbra 변화 효과)

  • Yi, Byong-Yong;Cho, Young-Kap;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 1996
  • Purpose : To evaluate the clinical implications of scallop penumbra width that comes from multileaf collimator(MLC) effect by the daily routine patient setup error. Materials and Methods : The anales of $0^{circ},{\;}15^{circ},{\;}30^{circ},{\;}45^{circ},{\;}60^{circ},{\;}and{\;}75^{circ}$ inclined -radiation blocked fields were generated using the both conventional cerrobend block and the MLC. Film dosimetry in the phantom were performed to measure penumbral widths of differences between the dose distributions from the cerrobend block and those of respect the MLC. The patient setup error effect on scallop penumbra was simulated with respect to the table of setup error distribution. Same procedures are repeated for the cerrobend block generated field. Results : There are penumbral widths of to 3mm difference between the dose distributioins from two kinds of field shaping tools, the conventional block and the MLC with 4mm setup error model and resolution of 1cm leaf at the isocenter. Conclusion : We need not additive margin for MLC, if planning target volume is selected according to the recommendation of ICRU 50. For particular cases, we can include the target volume with less than 3mm additive margin.

  • PDF