• Title/Summary/Keyword: Multi-Grid

Search Result 608, Processing Time 0.027 seconds

Essential Computational Tools for High-Fidelity Aerodynamic Simulation and Design (고 정밀 항공우주 유동해석 및 설계를 위한 공력계산 툴)

  • Kim, Chong-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.33-36
    • /
    • 2006
  • As the computing environment is rapidly improved, the interests of CFD are gradually focused on large-scale computation over complex geometry. Keeping pace with the trend, essential computational tools to obtain solutions of complex aerospace flow analysis and design problems are examined. An accurate and efficient flow analysis and design codes for large-scale aerospace problem are presented in this work. With regard to original numerical schemes for flow analysis, high-fidelity flux schemes such as RoeM, AUSMPW+ and higher order interpolation schemes such as MLP (Multi-dimensional Limiting Process) are presented. Concerning the grid representation method, a general-purpose basis code which can handle multi-block system and overset grid system simultaneously is constructed. In respect to design optimization, the importance of turbulent sensitivity is investigated. And design tools to predict highly turbulent flows and its sensitivity accurately by fully differentiating turbulent transport equations are presented. Especially, a new sensitivity analysis treatment and geometric representation method to resolve the basic flow characteristics are presented. Exploiting these tools, the capability of the proposed approach to handle complex aerospace simulation and design problems is tested by computing several flow analysis and design problems.

  • PDF

A Study of Circulating Current in MMC based HVDC System under an Unbalanced Grid Condition (불평형 전원 조건에서 MMC 기반 HVDC 시스템 순환전류에 관한 연구)

  • Do, Won-Seok;Kim, Si-Hwan;Kim, Tae-Jin;Kim, Rae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1193-1201
    • /
    • 2015
  • This paper presents a study of circulating current of modular multi-level converter (MMC) based a high voltage direct current (HVDC) system under unbalanced grid conditions. Due to the connection of a dependent DC source in each phase, the MMC system inherently generates the power ripple of double-line-frequency components in the AC-side and as a result, the additional sinusoidal current named circulating current flows through the each arm. Reliability improvement of HVDC system under an unbalanced grid condition is one of the important criteria. Generally, the modeling of the circulating current is based on the power relation between DC-side and AC-side. However, the method is not perfectly matched in the MMC system due to the difference of the structural characteristic. In this paper, improved modeling method of circulating current is proposed, which is based on the inner arm power. The proposed method is verified by several simulations to have good agreement of the circulating current components.

Space Service Volume Augmented with Korean Positioning System at Geosynchronous Orbit

  • Kim, Gimin;Park, Chandeok;Lim, Deok Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.327-336
    • /
    • 2020
  • This study presents signal availability of inter-operable global navigation satellite system (multi-GNSS) combined with future Korean Positioning System (KPS), specifically at geosynchronous orbit (GSO). The orbit of KPS, which is currently under conceptual feasibility study, is first introduced, and the grid points for evaluating space service volume (SSV) at GSO are generated. The signal observabilities are evaluated geometrically between those grid points and KPS/GNSS satellites. Then, analyzed are the visibility averaged over time/space and outage time to not access one or four signals. The reduction of maximum outage time induced by KPS are presented with different maximum off-boresight angles depending on L1/E1/B1 and L5/L3/E5a/B2 frequencies. Our numerical analysis shows that the SSV of multi-GNSS combined with KPS provides up to 7 additional signals and could provide continuous observation time (zero outage time) of more than four GNSS or KPS signals for 3.20-14.83% of SSV grid points at GSO. Especially at GSO above North/South America and Atlantic region, the introduction of KPS reduces the outage duration by up to 63 minutes with L1/E1/B1 frequency.

Cryopreservation of Human Multi-Pronuclear (PN) Zygote by Ultra-Rapid Freezing (인간 다-전핵기 (>2PN) 수정란의 초급속 동결에 관한 연구)

  • Kim, E.Y.;Yi, B.K.;Nam, H.K.;Lee, K.S.;Yoon, S.H.;Park, S.P.;Chung, K.S.;Lim, J.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.2
    • /
    • pp.129-134
    • /
    • 1998
  • The objective of this study was to test whether the developmental capacity of human multi-pronuclear (PN) zygotes after ultra-rapid freezing using EM grid can be maintained. For this experiment, multi-PN zygotes which produced in human IVF program were used as an alternatives of normal 2PN zygotes, and they were separated into 3PN or $\geq4PN$ zygotes to compare their in vitro development and cryoinjury according to PN number. As freezing solution, EFS30 which consisted of 30% ethylene glycol, 18% bcoll, 0.5 M sucrose and 10% FBS added D-PBS was used. The result obtained in this experiment was summarized as follows; When the multi..PN zygotes were ultrarapidly frozen and thawed, the high mean percentages (85.5%) were survived. Also when the cleavage rates between control and freezing group were compared with PN number, there were not significantly different in each group (3PN; 81.3% & 85.4% and $\geq4PN$; 90.0% & 95.7%). When the in vitro development rates after thawing were examined, freezing 3PN group (22.0%) was not differed to control 3PN group (38.5%), although the development result of freezing $\geq4PN$ group (45%) was significantly lower than that of control $\geq4PN$ group (44.4%) (p<0.05). These results demonstrate that developmental capacity of human zygote can be obtained by ultra-rapid freezing method using EM grid and EFS30.

  • PDF

Interface-tracking simulation of multi-phase flow using CIP-CSL2 scheme (CIP-CSL2법에 의한 다상유동 경계포획 시뮬레이션)

  • Im, H.N
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.25-30
    • /
    • 2011
  • In this study, it is performed numerical simulation on multi-phase flow by means of CIP-CSI2 scheme. It is applied In a two-phase free surface flow problem at a high density ratio equivalent to that of an air-water system, for examining the computational capability. The method that is being developed and improved is a CIP(Constrained Interpolation Profile) and CSL2(Conservative Semi-Lagrangian) based Cartesian Grid Method.

  • PDF

Tropospheric Anomaly Detection in Multi-reference Stations Environment during Localized Atmosphere Conditions-(1) : Basic Concept of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.265-270
    • /
    • 2016
  • Extreme tropospheric anomalies such as typhoons or regional torrential rain can degrade positioning accuracy of the GPS signal. It becomes one of the main error terms affecting high-precision positioning solutions in network RTK. This paper proposed a detection algorithm to be used during atmospheric anomalies in order to detect the tropospheric irregularities that can degrade the quality of correction data due to network errors caused by inhomogeneous atmospheric conditions between multi-reference stations. It uses an atmospheric grid that consists of four meteorological stations and estimates the troposphere zenith total delay difference at a low performance point in an atmospheric grid. AWS (automatic weather station) meteorological data can be applied to the proposed tropospheric anomaly detection algorithm when there are different atmospheric conditions between the stations. The concept of probability density distribution of the delta troposphere slant delay was proposed for the threshold determination.

A NUMERICAL ANALYSIS USING CIP METHOD (CIP 방법을 사용한 해석법)

  • Lee, J.H.;Hur, N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.211-217
    • /
    • 2009
  • The numerical program has been developed for the purpose of the complicate geometries application using CIP method. The non-staggered, non-orthogonal, and unstructured grid system can be also used for the various geometries in the program. For validating CIP solver, the lid-driven cavity flow and solitary wave propagation flow are carried out. Test results show a good agreement with the verified results. The dynamic solver was used for the behavior of moving body. Interface process between the two solvers is introduced. The research was performed on the flow problem around torpedo and log and the flow problem in a tank in order to analyze the three phase flow problem Although the comparison to the verified results was not quantitatively performed, the trend of the results was reasonable.

  • PDF

Numerical Wave Tank Technology for Multipurpose Simulation in Marine Environmental Engineering (해양환경공학의 다목적 시뮬레이션을 위한 수치파랑수조 기술)

  • 박종천
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • A virtual reality technology for multipurpose numerical simulation is developed to reproduce and investigate a variety of ocean environmental problems in a 3D Numerical Wave Tank(NWT). The governing equations for solving incompressible fluid motion are Navier-Stokes equation and continuity equation. The Marker-Density function technique is adopted to implement the fully nonlinear freesurface kinematic condition. The marine environmental situations, i.e., waves, currents, etc., are reproduced by use of multi-segmented wavemakers on the basis of the so-called ″snake-principle″. In this paper, some numerical reproduction techniques for regular, and irregular waves, multi-directional waves, Bull's-eye wave. wave-current, and solitary wave are presented, and a model test in motion with large amplitude of roll angle is conducted in the developed 3D-NWT, using a overlaid grid system.

Grounding Grid Design Considering the Dangerous Voltage of Multi-layered Model in the Constrained Sites (제한된 부지 다층 대지구조에서 위험전압을 고려한 접지설계)

  • Son, Seok-Geum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.139-144
    • /
    • 2013
  • In Korea, where most of the sites are narrow in space and their earth resistivity is relatively high, the spaces between grounding conductors are likely to be designed narrow in order to lower ground resistance and dangerous voltage below to the permitted safety values. In addition, ground nets are in the shape of square or rectangle depending on the location and size of the facilities and ground contact area, and inner conductors are laid out in grids like the pattern of nets. Nevertheless, with the existing designs, the marginal voltage for safety gets higher as the area is extended further outside, in comparison with that of inner mesh grounding, thus causing much difficulty maintaining them equipotential, and there exist limits in the burial, grounding grid design considering the dangerous voltage of muti-layered model in the constrained sites, was studied.

On the artificially-upstream flux splitting method

  • Sun M.;Takayama K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.156-157
    • /
    • 2003
  • A simple method is proposed to split the flux vector of the Euler equations by introducing two artificial wave speeds. The direction of wave propagation can be adjusted by these two wave speeds. This idea greatly simplifies the upwinding, and leads to a new family of upwind schemes. Numerical flux function for multi-dimensional Euler equations is formulated for any grid system, structured or unstructured. A remarkable simplicity of the scheme is that it successfully achieves one-sided approximation for all waves without recourse to any matrix operation. Moreover, its accuracy is comparable with the exact Riemann solver. For 1-D Euler equations, the scheme actually surpasses the exact solver in avoiding expansion shocks without any additional entropy fix. The scheme can exactly resolve stationary contact discontinuities, and it is also freed of the carbuncle problem in multi­dimensional computations.

  • PDF